
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Krzysztof Fujarewicz, Marek Kimmel, Tomasz Lipniacki, Andrzej Świerniak, "Adjoint Systems for Models of Cell Signaling Pathways and their Application to Parameter Fitting," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4, no. 3, pp. 322335, JulySeptember, 2007.  
BibTex  x  
@article{ 10.1109/tcbb.2007.1016, author = {Krzysztof Fujarewicz and Marek Kimmel and Tomasz Lipniacki and Andrzej Świerniak}, title = {Adjoint Systems for Models of Cell Signaling Pathways and their Application to Parameter Fitting}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {4}, number = {3}, issn = {15455963}, year = {2007}, pages = {322335}, doi = {http://doi.ieeecomputersociety.org/10.1109/tcbb.2007.1016}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Adjoint Systems for Models of Cell Signaling Pathways and their Application to Parameter Fitting IS  3 SN  15455963 SP322 EP335 EPD  322335 A1  Krzysztof Fujarewicz, A1  Marek Kimmel, A1  Tomasz Lipniacki, A1  Andrzej Świerniak, PY  2007 KW  Biology and genetics KW  modeling KW  ordinary differential equations KW  parameter learning VL  4 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] A. Arkin, J. Ross, and H.A. McAdams, “Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in Phage LambdaInfected Escherichia Coli Cells,” Genetics, vol. 149, pp. 16331648, 1998.
[2] H. Bock, “Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics,” Modeling of Chemical Reaction Systems, K. Ebert, P. Deuflhard, and W. Jager, eds., vol. 18, pp. 102125, 1981.
[3] H. Bock, “Recent Advances in Parameter Identification for Ordinary Differential Equations,” Progress in Scientific Computing, P. Deuflhard and E. Hairer, eds., vol. 2, pp. 95121, 1983.
[4] J. Bodrewijk, “InterReciprocity Applied to Electrical Networks,” Applied Scientific Research, vol. 6B, pp. 174, 1956.
[5] R.E. Crochiere and A.V. Oppenheim, “Analysis of Linear Digital Networks,” Proc. IEEE, vol. 63, no. 4, pp. 581595, 1975.
[6] H. de Jong, “Modeling and Simulation of Genetic Regulatory Systems: A Literature Review,” J. Computational Biology, vol. 9, no. 1, pp. 67103, 2002.
[7] A. Fettweiss, “A General Theorem for SignalFlow Networks,” Archiv für Elektronik un d Übertragungstechnik, vol. 25, no. 12, pp.557561, Dec. 1971.
[8] K. Fujarewicz, “Optimal Control of Nonlinear Systems Using Generalized Back Propagation through Time,” Proc. 18th IASTED Conf. Modelling, Identification, and Control, pp. 468471, Feb. 1999.
[9] K. Fujarewicz and A. Galuszka, “Generalized Backpropagation through Time for Continuous Time Neural Networks and Discrete Time Measurements,” Lecture Notes in Computer Science, pp. 190196, 2004.
[10] K. Fujarewicz, M. Kimmel, and A. Swierniak, “On Fitting of Mathematical Models of Cell Signaling Pathways Using Adjoint Systems,” Math. Biosciences and Eng., vol. 2, no. 3, pp. 527534, 2005.
[11] K. Fujarewicz, “Generalized Backpropagation through Time for ContinuousTime Neural Models Identification,” Proc. Industrial Simulation Conf., pp. 178181, June 2006.
[12] “Automatic Differentiation of Algorithms: Theory, Implementation and Application,” Proc. First SIAM Workshop Automatic Differentiation, A. Griewank and G. Coliss, eds., 1991.
[13] J. Hasty, D. McMillen, F. Isaacs, and J.J. Collins, “Computational Studies of Gene Regulatory Networks: In Numero Molecular Biology,” Nature Rev. Genetics, vol. 2, pp. 268279, 2001.
[14] A. Hoffman, A. Levchenko, M.L. Scott, and D. Baltimore, “The ${\rm I}\kappa{\rm B}{\rm NF}\kappa{\rm B}$ Signaling Module: Temporal Control and Selective Gene Activation,” Science, vol. 298, pp. 12411245, 2002.
[15] T. Kailath, Linear Systems. Prentice Hall, 1980.
[16] E.G. Lee, D.L. Boone, S. Chai, S.L. Libby, M. Chien, J.P. Lodolce, and A. Ma, “Failure to Regulate TNFInduced NF$\kappa{\rm B}$ and Cell Death Responses in A20Deficient Mice,” Science, vol. 289, pp.23502354, 2000.
[17] T. Lipniacki, P. Paszek, A.R. Brasier, B. Luxon, and M. Kimmel, “Mathematical Model of NF$\kappa{\rm B}$ Regulatory Module,” J. Theoretical Biology, vol. 228, pp. 195215, 2004.
[18] L. Ljung and T. Glad, “On Global Identifiability for Arbitrary Model Parametrizations,” Automatica, vol. 30, pp. 265276, 1994.
[19] A. Oppenheim and R. Zoppoli, Digital Signal Processing. Prentice Hall, 1989.
[20] K. Schittkowski, “Parameter Estimation in Systems of Nonlinear Equations,” Numerical Math., vol. 68, pp. 129142, 1994.
[21] B. Srinivasan, U.R. Prasad, and N.J. Rao, “Backpropagation through Adjoints for the Identification of Non Linear Dynamic Systems Using Recurrent Neural Models,” IEEE Trans. Neural Networks, pp. 213228, Mar. 1994.
[22] P. Smolen, D.A. Baxter, and J.H. Byrne, “Modeling Transcriptional Control in Gene Networks: Methods, Recent Results, and Future Directions,” Bull. Math. Biology, vol. 62, pp. 247292, 2000.
[23] D. Tellegen, “A General Network Theorem, with Applications,” Philips Research Report, vol. 7, pp. 259269, 1952.
[24] J. Timmer, T.G. Müller, I. Swameye, O. Sandra, and U. Klingmüller, “Modeling the Nonlinear Dynamics of Cellular Signal Transduction,” Int'l J. Bifurcation and Chaos, vol. 14, no. 6, pp. 20692079, 2004.
[25] J.J. Tyson, K.C. Chen, and B. Novak, “Sniffers, Buzzers, Toggles and Blinkers: Dynamics of Regulatory and Signaling Pathway in the Cell,” Current Opinions in Cell Biology, vol. 15, pp. 221231, 2003.
[26] S. Vajda, K. Godfrey, and H. Rabitz, “Similarity Transformation Approach to Identifiability of Nonlinear Compartmental Models,” Math. Bioscience, vol. 93, pp. 217248, 1989.
[27] B. van Domselaar and P. Hemker, “Nonlinear Parameter Estimation in Initial Value Problems,” Technical Report NW 18/75, Math. Centre Amsterdam, 1975.
[28] E. Wan and F. Beaufays, “Diagrammatic Derivation of Gradient Algorithms for Neural Networks,” Neural Computation, vol. 8, no. 1, pp. 182201, Jan. 1996.
[29] P.J. Werbos, “Backpropagation through Time: What It Does and How to Do It,” Proc. IEEE, vol. 78, pp. 15501560, 1990.