
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Anthony Labarre, "New Bounds and Tractable Instances for the Transposition Distance," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 3, no. 4, pp. 380394, OctoberDecember, 2006.  
BibTex  x  
@article{ 10.1109/TCBB.2006.56, author = {Anthony Labarre}, title = {New Bounds and Tractable Instances for the Transposition Distance}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {3}, number = {4}, issn = {15455963}, year = {2006}, pages = {380394}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2006.56}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  New Bounds and Tractable Instances for the Transposition Distance IS  4 SN  15455963 SP380 EP394 EPD  380394 A1  Anthony Labarre, PY  2006 KW  Genome rearrangements KW  permutations KW  sorting by transpositions. VL  3 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] J. Meidanis and J. Setubal, Introduction to Computational Molecular Biology. BrooksCole, 1997.
[2] P.A. Pevzner, Computational Molecular Biology. MIT Press, 2000.
[3] V. Bafna and P.A. Pevzner, “Sorting Permutations by Transpositions,” Proc. Sixth Ann. ACMSIAM Symp. Discrete Algorithms, pp.614623, Jan. 1995.
[4] V. Bafna and P.A. Pevzner, “Sorting by Transpositions,” SIAM J. Discrete Math., vol. 11, no. 2, pp. 224240, May 1998.
[5] D.A. Christie, “Genome Rearrangement Problems,” PhD dissertation, Univ. of Glasgow, Scotland, Aug. 1998.
[6] T. Hartman and R. Shamir, “A Simpler and Faster 1.5Approximation Algorithm for Sorting by Transpositions,” Information and Computation, vol. 204, no. 2, pp. 275290, Feb. 2006.
[7] I. Elias and T. Hartman, “A 1.375Approximation Algorithm for Sorting by Transpositions,” Proc. Fifth Workshop Algorithms in Bioinformatics, R. Casadio and G. Myers, eds., pp. 204214, Oct. 2005.
[8] S.A. Guyer, L.S. Heath, and J.P. Vergara, “Subsequence and Run Heuristics for Sorting by Transpositions,” Fourth DIMACS Algorithm Implementation Challenge, Rutgers Univ., Aug. 1995.
[9] J.P.C. Vergara, “Sorting by Bounded Permutations,” PhD dissertation, Virginia Polytechnic Inst., Blacksburg, Apr. 1997.
[10] M.E.M.T. Walter, L.R.A.F. Curado, and A.G. Oliveira, “Working on the Problem of Sorting by Transpositions on Genome Rearrangements,” Proc. 14th Ann. Symp. Combinatorial Pattern Matching, pp. 372383, 2003.
[11] Z. Dias and J. Meidanis, “An Alternative Algebraic Formalism for Genome Rearrangements,” Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, vol. 1, pp. 213223, 2000.
[12] Z. Dias and J. Meidanis, “Genome Rearrangements Distance by Fusion, Fission, and Transposition Is Easy,” Proc. Eighth Int'l Symp. String Processing and Information Retrieval, pp. 250253, Nov. 2001.
[13] A. Labarre, “A New Tight Upper Bound on the Transposition Distance,” Proc. Fifth Workshop Algorithms in Bioinformatics, R.Casadio and G. Myers, eds., pp. 216227, Oct. 2005.
[14] H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and J. Wästlund, “Sorting a Bridge Hand,” Discrete Math., vol. 241, nos.13, pp. 289300, 2001.
[15] A. Hultman, “Toric Permutations,” master's thesis, Dept. of Math., KTH, Stockholm, Sweden, 1999.
[16] Z. Dias, J. Meidanis, and M.E.M.T. Walter, “A New Approach for Approximating the Transposition Distance,” Proc. Seventh Int'l Symp. String Processing and Information Retrieval, pp. 199208, Sept. 2000.
[17] S. Hannenhalli and P.A. Pevzner, “Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals,” J. ACM, vol. 46, no. 1, pp. 127, Jan. 1999.
[18] V. Bafna and P.A. Pevzner, “Genome Rearrangements and Sorting by Reversals,” Proc. 34th Annual Symp. Foundations of Computer Science, pp. 148157, 1993.