
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Sebastian Wernicke, "Efficient Detection of Network Motifs," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 3, no. 4, pp. 347359, OctoberDecember, 2006.  
BibTex  x  
@article{ 10.1109/TCBB.2006.51, author = {Sebastian Wernicke}, title = {Efficient Detection of Network Motifs}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {3}, number = {4}, issn = {15455963}, year = {2006}, pages = {347359}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2006.51}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Efficient Detection of Network Motifs IS  4 SN  15455963 SP347 EP359 EPD  347359 A1  Sebastian Wernicke, PY  2006 KW  Network motif detection algorithm KW  subgraph enumeration KW  subgraph sampling KW  subgraph concentration in random graphs. VL  3 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] I. Albert and R. Albert, “Conserved Network Motifs Allow ProteinProtein Interaction Prediction,” Bioinformatics, vol. 20, no. 18, pp. 33463352, 2004.
[2] N. Alon, R. Yuster, and U. Zwick, “Finding and Counting Given Length Cycles,” Algorithmica, vol. 17, no. 3, pp. 209223, 1997.
[3] L.A.N. Amaral, A. Scala, M. Barthélémy, and H.E. Stanley, “Classes of SmallWorld Networks,” Proc. Nat'l Academy of Sciences, vol. 97, no. 21, pp. 1114911152, 2000.
[4] Y. ArtzyRandrup, S.J. Fleishman, N. BenTal, and L. Stone, “Comment on 'Network Motifs: Simple Building Blocks of Complex Networks' and 'Superfamilies of Designed and Evolved Networks',” Science, vol. 305, no. 5687, p. 1007c, 2004.
[5] A.L. Barabási and R. Albert, “Emergence of Scaling in Random Networks,” Science, vol. 286, no. 5439, pp. 509512, 1999.
[6] E.A. Bender, “The Asymptotic Number of NonNegative Matrices with Given Row and Column Sums,” Discrete Math., vol. 10, no. 2, pp. 217223, 1974.
[7] E.A. Bender and E.R. Canfield, “The Asymptotic Number of Labeled Graphs with Given Degree Sequences,” J. Combinatorial Theory Series A, vol. 24, no. 3, pp. 296307, 1978.
[8] J. Berg and M. Lässig, “Local Graph Alignment and Motif Search in Biological Networks,” Proc. Nat'l Academy of Sciences, vol. 101, no. 41, pp. 1468914694, 2004.
[9] D.A. Berque, M.K. Goldberg, and J.A. Edmonds, “Implementing Progress Indicators for Recursive Algorithms,” Proc. Fifth ACMSIGAPP Symp. Applied Computing (SAC '93), pp. 533538, 1993.
[10] R.A. Duke, H. Lefmann, and V. Rödl, “A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph,” SIAM J. Computing, vol. 24, no. 3, pp. 598620, 1995.
[11] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, second ed. AddisonWesley, 1994.
[12] S. Itzkovitz et al., “CoarseGraining and SelfDissimilarity of Complex Networks,” Physical Rev. E, vol. 71, p. 016127, 2005.
[13] S. Itzkovitz et al., “Subgraphs in Random Networks,” Physical Rev. E, vol. 68, p. 026127, 2003.
[14] S. Kalir et al., “Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria,” Science, vol. 292, no. 5524, pp. 20802083, 2001.
[15] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “Efficient Sampling Algorithm for Estimating Subgraph Concentrations and Detecting Network Motifs,” Bioinformatics, vol. 20, no. 11, pp. 17461758, 2004.
[16] D.E. Knuth, “Estimating the Efficiency of Backtrack Programs,” Selected Papers on Analysis of Algorithms, Stanford Junior Univ., Palo Alto, Calif., 2000.
[17] M. Koyutürk, A. Grama, and and W. Szpankowski, “An Efficient Algorithm for Detecting Frequent Subgraphs in Biological Networks,” Bioinformatics, vol. 20, no. supplement 1, pp. i200i207, 2004.
[18] T.I. Lee et al., “Transcriptional Regulatory Networks in Saccharomyces Cerevisiae,” Science, vol. 298, no. 5594, pp. 799804, 2002.
[19] S. Li et al., “A Map of the Interactome Network of the Metazoan C. Elegans,” Science, vol. 303, no. 5657, pp. 540543, 2004.
[20] B.D. McKay, “Practical Graph Isomorphism,” Congressus Numerantium, vol. 30, pp. 4587, 1981.
[21] B.D. McKay, “Nauty User's Guide (Version 1.5),” Technical Report TRCS9002, Dept. of Computer Science, Australian Nat'l Univ., 1990.
[22] R. Milo et al., “Response to Comment on 'Network Motifs: Simple Building Blocks of Complex Networks' and 'Superfamilies of Designed and Evolved Networks',” Science, vol. 305, no. 5687, p.1007d, 2004.
[23] R. Milo et al., “Superfamilies of Designed and Evolved Networks,” Science, vol. 303, no. 5663, pp. 15381542, 2004.
[24] R. Milo et al., “Network Motifs: Simple Building Blocks of Complex Networks,” Science, vol. 298, no. 5594, pp. 824827, 2002.
[25] M.E.J. Newman, S.H. Strogatz, and D.J. Watts, “Random Graphs with Arbitrary Degree Distributions and Their Applications,” Physical Rev. E, vol. 64, p. 026118, 2001.
[26] S. Ott, A. Hansen, S. Kim, and S. Miyano, “Superiority of Network Motifs over Optimal Networks and an Application to the Revelation of Gene Network Evolution,” Bioinformatics, vol. 21, no. 2, pp. 227238, 2005.
[27] M. Ronen, R. Rosenberg, B.I. Shraiman, and U. Alon, “Assigning Numbers to the Arrows: Parameterizing a Gene Regulation Network by Using Accurate Expression Kinetics,” Proc. Nat'l Academy of Sciences, vol. 99, no. 16, pp. 1055510560, 2002.
[28] S.S. ShenOrr, R. Milo, S. Mangan, and U. Alon, “Network Motifs in the Transcriptional Regulation Network of Escherichia Coli,” Nature Genetics, vol. 31, no. 1, pp. 6468, 2002.
[29] E. Szemerédi, “Regular Partitions of Graphs,” Problèmes Combinatoires et Théorie des Graphes, no. 260 in Colloques internationaux CNRS, pp. 399401, 1976.
[30] A. Vázquez et al., “The Topological Relationship between the LargeScale Attributes and Local Interaction Patterns of Complex Networks,” Proc. Nat'l Academy of Sciences, vol. 101, no. 52, pp.1794017945, 2004.
[31] A. Vespignani, “Evolution Thinks Modular,” Nature Genetics, vol. 35, no. 2, pp. 118119, 2003.
[32] D.J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton Univ. Press, 1999.
[33] S. Wernicke and F. Rasche, “FANMOD: A Tool for Fast Network Motif Detection,” Bioinformatics, vol. 22, no. 9, pp. 11521153, 2006.
[34] H.S. Wilf, Generatingfunctionology, second ed. Academic Press, 1994.
[35] R.J. Williams and N.D. Martinez, “Simple Rules Yield Complex Food Webs,” Nature, vol. 404, no. 6774, pp. 180183, 2000.
[36] S.H. Yook, Z.N. Oltvai, and A.L. Barabási, “Functional and Topological Characterization of Protein Interaction Networks,” Proteomics, vol. 4, no. 4, pp. 928942, 2004.