
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Sagi Snir, Satish Rao, "Using Max Cut to Enhance Rooted Trees Consistency," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 3, no. 4, pp. 323333, OctoberDecember, 2006.  
BibTex  x  
@article{ 10.1109/TCBB.2006.58, author = {Sagi Snir and Satish Rao}, title = {Using Max Cut to Enhance Rooted Trees Consistency}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {3}, number = {4}, issn = {15455963}, year = {2006}, pages = {323333}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2006.58}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Using Max Cut to Enhance Rooted Trees Consistency IS  4 SN  15455963 SP323 EP333 EPD  323333 A1  Sagi Snir, A1  Satish Rao, PY  2006 KW  Phylogenetic trees KW  supertrees KW  rooted triplets KW  semidefinite programming. VL  3 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] S. Arora, S. Rao, and U. Vazirani, “Expander Flows, Geometric Embeddings and Graph Partitioning,” Proc. Symp. Foundations of Computer Science, 2004.
[2] A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman, “Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions,” SIAM J. Computing, vol. 10, no. 3, pp. 405421, 1981.
[3] B.R. Baum, “Combining Trees as a Way of Combining Data Sets for Phylogenetic Inference,” Taxon, vol. 41 pp. 310, 1992.
[4] A. BenDor, B. Chor, D. Graur, R. Ophir, and D. Pelleg, “Constructing Phylogenies from Quartets: Elucidation of Eutherian Superordinal Relationships,” J. Computational Biology, vol. 5, no. 3, pp. 377390, 1998.
[5] D. Bryant, “Hunting for Trees, Building Trees and Comparing Trees: Theory and Method in Phylogenetic Analysis,” PhD thesis, Dept. of Math., Univ. of Canterbury, New Zealand, 1997.
[6] D.J. Bryant and M.A. Steel, “Extension Operations on Sets of LeafLabelled Trees,” Advances in Applied Math., vol. 16, no. 4, pp. 425453, 2000.
[7] M. Cardillo, O.R.P. BinindaEmonds, E. Boakes, and A. Purvis, “A SpeciesLevel Phylogenetic Supertree of Marsupials,” J. Zoology, vol. 264, no. 1, pp. 1131, 2004.
[8] D. Chen, O. Eulenstein, D. FernandezBaca, and M. Sanderson, “Supertrees by Flipping,” Proc. Int'l Computing and Combinatorics Conf. (COCOON), 2002.
[9] O. Eulenstein, D. Chen, J.G. Burleigh, D. FernandezBaca, and M.J. Sanderson, “Performance of Flip Supertrees with a Heuristic Algorithm,” Systematic Biology, vol. 53, no. 2, pp. 299308, 2004.
[10] P. Erdos, M. Steel, L. Szekely, and T. Warnow, “A Few Logs Suffice to Build (Almost) All Trees (I),” Random Structures and Algorithms, vol. 14, pp. 153184, 1999.
[11] C.M. Fiduccia and R.M. Mattheyses, “A Linear Time Heuristic for Improving Network Partitions,” Proc. Design Automation Conf., pp.175181, 1982.
[12] M.X. Goemans and D.P. Williamson, “Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming,” J. ACM, vol. 42, no. 6, pp. 11151145, Nov. 1995.
[13] M.R. Henzinger, V. King, and T. Warnow, “Constructing a Tree from Homeomorphic Subtrees, with Applications to Computational Evolutionary Biology,” Proc. ACMSIAM Symp. Discrete Algorithms (SODA), pp. 333340, 1996.
[14] D. Huson, S. Nettles, and T. Warnow, “DiskCovering, a Fast Converging Method for Phylogenetic Tree Reconstruction,” J.Computational Biology, no. 6, pp. 369386, 1999.
[15] B.W. Kernighan and S. Lin, “An Encient Heuristic Procedure for Partitioning Graphs,” The Bell Systems Technical J., vo. 29, no. 2, pp.291307, 1970.
[16] E. Mossel, “Distorted Metrics on Trees and Phylogenetic Forests,” submitted, 2005.
[17] S. Moran, S. Rao, and S. Snir, “Using SemiDefinite Programming to Enhance Supertree Resolvability,” Proc. Fifth Int'l Workshop Algorithms in Bioinformatics (WABI), pp. 89103, Oct. 2005.
[18] S. Moran and S. Snir, “Convex Recoloring of Strings and Trees: Definitions, Hardness Results and Algorithms,” J. Computer and System Sciences, 2005.
[19] R.D.M. Page, “Modified Mincut Supertrees,” Proc. Int'l Workshop Algorithms in Bioinformatics (WABI), R. Guigo and D. Gusfield, eds., 2002.
[20] W. Piel, M. Donoghue, and M. Sanderson, “TreeBASE: A Database of Phylogenetic Knowledge,” Nat'l Inst. for Environmental Studies, Tsukuba, Japan, 2002, http:/www.treebase.org.
[21] M.A. Ragan, “Matrix Representation in Reconstructing PhylogeneticRelationships among the Eukaryotes,“ Biosystems, vol. 28, pp. 4755, 1992.
[22] K. Rice, M. Donoghue, and R. Olmstead, “Analyzing Large Datasets: rbcl 500 Revisited,” Systematic Biology, vol. 46, no. 4, pp.554563, 1997.
[23] M. Steel, A. Dress, and S. Boker, “Simple but Fundamental Limitations on Supertree and Consensus Tree Methods,” Systematic Biology, vol. 49, pp. 363368, 2000.
[24] C. Semple and M. Steel, “A Supertree Method for Rooted Trees,” Discrete Applied Math., vol. 103, pp. 147158, 2000.
[25] M. Steel, “The Complexity of Reconstructing Trees from Qualitative Characters and Subtress,” J. Classification, vol. 9, no. 1, pp. 91116, 1992.
[26] M. Stoer and F. Wagner, “A Simple MinCut Algorithm,” J. ACM, vol. 44, pp. 585591, 1997.
[27] L. Vandenberghe and S. Boyd, “Semidefinite Programming,” SIAM Rev., vol 38, no. 1, pp. 4995, 1996.