
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Roded Sharan, Bjarni V. Halld?rsson, Sorin Istrail, "Islands of Tractability for Parsimony Haplotyping," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 3, no. 3, pp. 303311, JulySeptember, 2006.  
BibTex  x  
@article{ 10.1109/TCBB.2006.40, author = {Roded Sharan and Bjarni V. Halld?rsson and Sorin Istrail}, title = {Islands of Tractability for Parsimony Haplotyping}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {3}, number = {3}, issn = {15455963}, year = {2006}, pages = {303311}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2006.40}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Islands of Tractability for Parsimony Haplotyping IS  3 SN  15455963 SP303 EP311 EPD  303311 A1  Roded Sharan, A1  Bjarni V. Halld?rsson, A1  Sorin Istrail, PY  2006 KW  Biology and genetics KW  graph algorithms KW  analysis of algorithms and problem complexity. VL  3 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph, “Haplotyping as a Perfect Phylogeny. A Direct Approach,” J. Computational Biology, vol. 10, no. 3, pp. 323340, 2003.
[2] H.L. Bodlaender, “A Linear Tme Algorithm for Finding TreeDecompositions of Small Treewidth,” SIAM J. Computing, vol. 25, pp. 13051317, 1996.
[3] D.G. Brown and I.M. Harrower, “A New Integer Programming Formulation for the Pure Parsimony Problem in Haplotype Analysis,” Proc. Fourth Int'l Workshop Algorithms in Bioinformatics, pp. 254265, 2004.
[4] A.G. Clark, “Inference of Haplotypes from PCRAmplified Samples of Diploid Populations,” Molecular Biology and Evolution, vol. 7, no. 2, pp. 111122, 1990.
[5] L. Excoffier and M. Slatkin, “MaximumLikelihood Estimation of Molecular Haplotype Frequencies in a Diploid Population,” Molecular Biology and Evolution, vol. 12, no. 5, pp. 921927, 1995.
[6] D. Fallin and N.J. Schork, “Accuracy of Haplotype Frequency Estimation for Biallelic Loci, via the ExpectationMaximization Algorithm for Unphased Diploid Genotype Data,” Am. J. Human Genetics, vol. 67, no. 4, pp. 94759, 2000.
[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness. W.H. Freeman and Company, 1979.
[8] G. Greenspan and D. Geiger, “ModelBased Inference of Haplotype Block Variation,” J. Computational Biology, vol. 11, pp. 493504, 2004.
[9] D. Gusfield, “A Practical Algorithm for Optimal Inference of Haplotypes from Diploid Populations,” Proc. Eighth Int'l Conf. Intelligent Systems for Molecular Biology, pp. 183189, 2000.
[10] D. Gusfield, “Inference of Haplotypes from Samples of Diploid Populations: Complexity and Algorithms,” J. Computational Biology, vol. 8, no. 3, pp. 305324, 2001.
[11] D. Gusfield, “Haplotyping as Perfect Phylogeny: Conceptual Framework and Efficient Solutions (extended abstract),” Proc. Sixth Ann. Int'l Conf. Computational Molecular Biology, pp. 166175, 2002.
[12] D. Gusfield, “Haplotyping by Pure Parsimony,” Proc. 14th Symp. Combinatorial Pattern Matching, pp. 144155, 2003.
[13] B.V. Halldórsson, V. Bafna, N. Edwards, R. Lippert, S. Yooseph, and S. Istrail, “A Survey of Computational Methods for Determining Haplotypes,” Proc. Computational Methods for SNPs and Haplotype Inference, pp. 2647, 2004.
[14] E. Halperin and E. Eskin, “Haplotype Reconstruction from Genotype Data Using Imperfect Phylogeny,” Bioinformatics, vol. 20, pp. 18421849, 2004.
[15] J. Håstad, “Clique Is Hard to Approximate within $n^{1\epsilon}$ ,” Acta Mathematica, vol. 182, pp. 105142, 1999.
[16] M.E. Hawley and K.K. Kidd, “HAPLO: A Program Using the EM Algorithm to Estimate the Frequencies of MultiSite Haplotypes,” J. Heredity, vol. 86, pp. 409411, 1995.
[17] Y.T. Huang, K.M. Chao, and T. Chen, “An Approximation Algorithm for Haplotype Inference by Maximum Parsimony,” Proc. ACM Symp. Applied Computing, pp. 146150, 2005.
[18] E. Hubbell, “Finding a Maximum Parsimony Solution to Haplotype Phase is NPHard,” personal communication, 2001.
[19] G. Lancia, M.C. Pinotti, and R. Rizzi, “Haplotyping Populations by Pure Parsimony. Complexity, Exact and Approximation Algorithms,” INFORMS J. Computing, vol. 16, pp. 348359, 2004.
[20] H. Lin, Z.F. Zhang, DQ.F. Zhang, D.B. Bu, and M. Li, “A Note on the Single Genotype Resolution Problem,” J. Computer Science and Technology, vol. 19, pp. 254257, 2004.
[21] J.C. Long, R.C. Williams, and M. Urbanek, “An EM Algorithm and Testing Strategy for MultipleLocus Haplotypes,” Am. J. Human Genetics, vol. 56, no. 2, pp. 799810, 1995.
[22] T. Niu, Z.S. Qin, X. Xu, and J.S. Liu, “Bayesian Haplotype Inference for Multiple Linked SingleNucleotide Polymorphisms,” Am. J. Human Genetics, vol. 70, pp. 157169, 2002.
[23] N. Patil et al., “Blocks of Limited Haplotype Diversity Revealed by High Resolution Scanning of Human Chromosome 21,” Science, vol. 294, pp. 17191723, 2001.
[24] E. Petrank, “The Hardness of Approximations: Gap Location,” Computational Complexity, vol. 4, pp. 133157, 1994.
[25] R. Sharan, B.V. Halldórsson, and S. Istrail, “Islands of Tractability for Parsimony Haplotyping,” Proc. IEEE Computational Systems Bioinformatics Conf., 2005.
[26] M. Stephens, N.J. Smith, and P. Donnelly, “A New Statistical Method for Haplotype Reconstruction from Population Data,” Am. J. Human Genetics, vol. 68, pp. 978989, 2001.
[27] L. Wang and Y. Xu, “Haplotype Inference by Maximum Parsimony,” Bioinformatics, vol. 19, pp. 17731780, 2003.