
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Vincent Berry, Fran?ois Nicolas, "Improved Parameterized Complexity of the Maximum Agreement Subtree and Maximum Compatible Tree Problems," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 3, no. 3, pp. 289302, JulySeptember, 2006.  
BibTex  x  
@article{ 10.1109/TCBB.2006.39, author = {Vincent Berry and Fran?ois Nicolas}, title = {Improved Parameterized Complexity of the Maximum Agreement Subtree and Maximum Compatible Tree Problems}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {3}, number = {3}, issn = {15455963}, year = {2006}, pages = {289302}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2006.39}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Improved Parameterized Complexity of the Maximum Agreement Subtree and Maximum Compatible Tree Problems IS  3 SN  15455963 SP289 EP302 EPD  289302 A1  Vincent Berry, A1  Fran?ois Nicolas, PY  2006 KW  Phylogenetics KW  algorithms KW  consensus KW  pattern matching KW  trees KW  compatibility KW  fixedparameter tractability. VL  3 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] M.A. Steel and T.J. Warnow, “Kaikoura Tree Theorems: Computing the Maximum Agreement Subtree,” Information Processing Letters, vol. 48, no. 2, pp. 7782, 1993.
[2] M. Farach, T.M. Przytycka, and M. Thorup, “On the Agreement of Many Trees,” Information Processing Letters, vol. 55, no. 6, pp. 297301, 1995.
[3] A. Amir and D. Keselman, “Maximum Agreement Subtree in a Set of Evolutionary Trees: Metrics and Efficient Algorithm,” SIAM J. Computing, vol. 26, no. 6, pp. 16561669, 1997.
[4] A. Gupta and N. Nishimura, “Finding Largest Subtrees and Smallest Supertrees,” Algorithmica, vol. 21, no. 2, pp. 183210, 1998.
[5] M.Y. Kao, T.W. Lam, W.K. Sung, and H.F. Ting, “An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartte Matchings,” J. Algorithms, vol. 40, no. 2, pp. 212233, 2001.
[6] R. Cole, M. FarachColton, R. Hariharan, T.M. Przytycka, and M. Thorup, “An ${\rm O}(n\log n)$ Algorithm for the Maximum Agreement SubTree Problem for Binary Trees,” SIAM J. Computing, vol. 30, no. 5, pp. 13851404, 2001.
[7] D. Swofford, G. Olsen, P. Wadell, and D. Hillis, “Phylogenetic Inference,” Molecular Systematics, second ed., pp. 407514, 1996.
[8] G. Ganapathy and T.J. Warnow, “Approximating the Complement of the Maximum Compatible Subset of Leaves of $k$ Trees,” Proc. Fifth Int'l Workshop Approximation Algorithms for Combinatorial Optimization (APPROX '02), pp. 122134, 2002.
[9] V. Berry and F. Nicolas, “Maximum Agreement and Compatible Supertrees,” Proc. Ann. Symp. Combinatorial Pattern Matching, 2004.
[10] J. Jansson, J.H.K. Ng, K. Sadakane, and W.K. Sung, “Rooted Maximum Agreement Supertrees,” Proc. Sixth Latin Am. Symp. Theoretical Informatics (LATIN), 2004.
[11] A.M. Hamel and M.A. Steel, “Finding a Maximum Compatible Tree is NPHard for Sequences and Trees,” Applied Math. Letters, vol. 9, no. 2, pp. 5559, 1996.
[12] G. Ganapathysaravanabavan and T.J. Warnow, “Finding a Maximum Compatible Tree for a Bounded Number of Trees with Bounded Degree Is Solvable in Polynomial Time,” Proc. First Int'l Workshop Algorithms in Bioinformatics (WABI '01), pp. 156163, 2001.
[13] J. Hein, T. Jiang, L. Wang, and K. Zhang, “On the Complexity of Comparing Evolutionary Trees,” Discrete Applied Math., vol. 71, nos. 13, pp. 153169, 1996.
[14] M.Y. Kao, T.W. Lam, W.K. Sung, and H.F. Ting, “A Decomposition Theorem for Maximum Weight Bipartite Matchings with Applications to Evolutionary Trees,” Proc. Seventh Ann. European Symp. Algorithms (ESA'99), pp. 438449, 1999.
[15] D. Bryant, “Building Trees, Hunting for Trees and Comparing Trees: Theory and Method in Phylogenetic Analysis,” PhD dissertation, Univ. of Canterbury, 1997.
[16] R.G. Downey, M.R. Fellows, and U. Stege, “Computational Tractability: The View from Mars,” Bull. European Assoc. for Theoretical Computer Science, vol. 69, pp. 7397, 1999.
[17] J. Alber, J. Gramm, and R. Niedermeier, “Faster Exact Algorithms for Hard Problems: A Parameterized Point of View,” Discrete Math., vol. 229, nos. 13, pp. 327, 2001.
[18] V. Berry, S. Guillemot, F. Nicolas, and C. Paul, “On the Approximation of Computing Evolutionary Trees,” Proc. 11th Int'l Computing and Combinatorics Conf. (COCOON '05), Lecture Notes in Computer Science, no. 3595, pp. 115125, 2005.
[19] D. Gusfield, “Efficient Algorithms for Inferring Evolutionary Trees,” Networks, vol. 21, pp. 1928, 1991.
[20] T.J. Warnow, “Tree Compatibility and Inferring Evolutionary History,” J. Algorithms, vol. 16, no. 3, pp. 388407, 1994.
[21] D. Bryant and M.A. Steel, “Extension Operations on Sets of LeafLabelled Trees,” Advances in Applied Math., vol. 16, no. 4, pp. 425453, 1995.
[22] G.F. Eastabrook, C.S. Johnson, and F.R. McMorris, “An Algebraic Analysis of Cladistic Characters,” Discrete Math., vol. 16, pp. 141147, 1976.
[23] C. Semple and M. Steel, “Phylogenetics,” Oxford Lecture Series in Math. and Its Applications, Oxford Univ. Press, vol. 24, 2003.
[24] D. Bryant and V. Berry, “A Structured Family of Clustering and Tree Construction Methods,” Advances in Applied Math., vol. 27, no. 4, pp. 705732, 2001.
[25] G.F. Eastabrook and F.R. McMorris, “When Is One Estimate of Evolutionary Relationships a Refinement of Another?” J. Math. Biology, vol. 10, pp. 367373, 1980.
[26] R. Cole and R. Hariharan, “Dynamic LCA Queries on Trees,” Proc. 10th Ann. ACMSIAM Symp. Discrete Algorithms (SODA '99), pp. 235244, 1999.
[27] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, second ed. MIT Press, 2001.
[28] U. Feige, M.M. Halldórsson, and G. Kortsarz, “Approximating the Domatic Number,” Proc. 32nd Ann. ACM Symp. Theory of Computing (STOC '00), pp. 134143, 2000.
[29] R. Niedermeier and P. Rossmanith, “An Efficient Fixed Parameter Algorithm for $3{\hbox{}} \rm Hitting$ Set,” J. Discrete Algorithms, vol. 1, no. 1, pp. 89102, 2003.
[30] R.G. Downey, “Parameterized Complexity for the Skeptic,” Proc. 18th IEEE Conf. Computational Complexity (CCC '03), pp. 147168, 2003.