This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Minimum-Flip Supertrees: Complexity and Algorithms
April-June 2006 (vol. 3 no. 2)
pp. 165-173
The input to a supertree problem is a collection of phylogenetic trees that intersect pairwise in their leaf sets; the goal is to construct a single tree that retains as much as possible of the information in the input. This task is complicated by inconsistencies due to errors. We consider the case where the input trees are rooted and are represented by the clusters they exhibit. The problem is to find the minimum number of flips needed to resolve all inconsistencies, where each flip moves a taxon into or out of a cluster. We prove that the minimum-flip problem is {\cal NP}{\hbox{-}}{\rm complete}, but show that it is fixed-parameter tractable and give approximation algorithms for special cases.

[1] D.H. Huson, S.M. Nettles, and T.J. Warnow, “Disk-Covering, a Fast-Converging Method for Phylogenetic Tree Reconstruction,” J. Computational Biology, vol. 6, nos. 3-4, pp. 369-386, 1999.
[2] Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, O.R.P. Bininda-Emonds, ed. Kluwer Academic, 2004.
[3] A.D. Gordon, “Consensus Supertrees: The Synthesis of Rooted Trees Containing Overlapping Sets of Labelled Leaves,” J. Classification, vol. 9, pp. 335-348, 1986.
[4] M.A. Steel, “The Complexity of Reconstructing Trees from Qualitative Characters and Subtrees,” J. Classification, vol. 9, pp. 91-116, 1992.
[5] M.J. Sanderson, A. Purvis, and C. Henze, “Phylogenetic Supertrees: Assembling the Trees of Life,” Trends Ecological Evolution, vol. 13, pp. 105-109, 1998.
[6] C. Semple and M.A. Steel, “A Supertree Method for Rooted Trees,” Discrete Applied Math., vol. 105, pp. 147-158, 2000.
[7] M.A. Steel, A.W.M. Dress, and S. Böcker, “Simple but Fundamental Limitations on Supertree and Consensus Tree Methods,” Systematic Biology, vol. 49, pp. 363-368, 2000.
[8] M.J. Donoghue, “Phylogenies and the Analysis of Evolutionary Sequences, with Examples from Seed Plants,” Evolution, vol. 43, pp. 1137-1156, 1989.
[9] A. Ortolani, “Spots, Stripes, Tail Tips and Dark Eyes: Predicting the Function of Carnivore Colour Patterns Using the Comparative Method,” Biological J. Linnean Soc., vol. 67, pp. 433-476, 1999.
[10] A. Purvis, “A Modification to Baum and Ragan's Method for Combining Phylogenetic Trees,” Systematic Biology, vol. 44, pp. 251-255, 1995.
[11] O.R.P. Bininda-Emonds, J.L. Gittleman, and A. Purvis, “Building Large Trees by Combining Phylogenetic Information: A Complete Phylogeny of the Extant Carnivora (Mammalia),” Biological Rev., vol. 74, pp. 143-175, 1999.
[12] M.F. Wojciechowski, M.J. Sanderson, K.P. Steele, and A. Liston, “Molecular Phylogeny of the `Temperate Herbaceous Tribes' of Papilionoid Legumes: A Supertree Approach,” Advances in Legume Systematics, P. Herendeen and A. Bruneau, eds., vol. 9, pp. 277-298, 2000.
[13] F.G.R. Liu, M.M. Miyamoto, N.P. Freire, P.Q. Ong, M.R. Tennant, T.S. Young, and K.F. Gugel, “Molecular and Morphological Supertrees for Eutherian (Placental) Mammals,” Science, vol. 291, pp. 1786-1789, 2001.
[14] T.J. Davies, T.G. Barraclough, M.W. Chase, P.S. Soltis, D.E. Soltis, and V. Savolainen, “Darwin's Abominable Mystery: Insights from a Supertree of the Angiosperms,” Proc. Nat'l Academy Sciences USA, vol. 101, pp. 1904-1909, 2004.
[15] E. Grotkopp, M. Rejmanek, M.J. Sanderson, and T.L. Rost, “Evolution of Genome Size in Pines (Pinus) and Its Life-History Correlates: Supertree Analyses,” Evolution, pp. 1705-1729, 2004.
[16] D.R. Brooks, “Hennig's Parasitological Method: A Proposed Solution,” Systems Zoology, vol. 30, pp. 325-331, 1981.
[17] B.R. Baum, “Combining Trees as a Way of Combining Data Sets for Phylogenetic Inference, and the Desirability of Combining Gene Trees,” Taxon, vol. 41, pp. 3-10, 1992.
[18] M.A. Ragan, “Phylogenetic Inference Based on Matrix Representation of Trees,” Molecular Phylogenetics and Evolution, vol. 1, pp. 53-58, 1992.
[19] O. Eulenstein, D. Chen, J.G. Burleigh, D. Fernández-Baca, and M.J. Sanderson, “Performance of Flip Supertree Construction with a Heuristic Algorithm,” Systematic Biology, vol. 53, pp. 299-308, 2003.
[20] S. Kannan, T. Warnow, and S. Yooseph, “Computing the Local Consensus of Trees,” Proc. Symp. Discrete Algorithms, pp. 68-77, 1995.
[21] P. Kearney, M. Li, J. Tsang, and T. Jiang, “Recovering Branches on the Tree of Life: An Approximation Algorithm,” Proc. Symp. Discrete Algorithms, pp. 537-546, 1999.
[22] D. Bryant, J. Tsang, P.E. Kearney, and M. Li, “Computing the Quartet Distance between Evolutionary Trees,” Proc. Symp. Discrete Algorithms, pp. 285-286, 2000.
[23] A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman, “Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions,” SIAM J. Computing, vol. 10, no. 3, pp. 405-421, 1981.
[24] M.R. Henzinger, V. King, and T. Warnow, “Constructing a Tree From Homeomorphic Subtrees, with Applications to Computational Evolutionary Biology,” Algorithmica, vol. 24, pp. 1-13, 1999.
[25] R.D.M. Page, “Modified Mincut Supertrees,” Proc. Int'l Workshop Algorithms in Bioinformatics (WABI), D. Gusfield and R. Guigó, eds., pp. 300-315, Sept. 2002.
[26] R.L. Graham and L.R. Foulds, “Unlikelihood that Minimal Phylogenies for a Realistic Biological Study Can Be Constructed in Reasonable Computation Time,” Math. Bioscience, vol. 60, pp. 133-142, 1982.
[27] J. Felsenstein, “PHYLIP,” http://evolution.genetics.washington. edu phylip.html, 2006.
[28] I. Pe'er, R. Shamir, and R. Sharan, “Incomplete Directed Perfect Phylogeny,” Combinatorial Pattern Matching, R. Giancarlo and D. Sankoff, eds., Springer-Verlag, pp. 143-153, 2000.
[29] G.F. Estabrook, C. Johnson, and F.R. McMorris, “An Idealized Concept of the True Cladistic Character?” Math. Bioscience, vol. 23, pp. 263-272, 1975.
[30] D. Gusfield, Algorithms on Strings, Trees, and Sequences. New York: Cambridge Univ. Press, 1997.
[31] J.S. Farris, “On Comparing the Shapes of Taxonomic Trees,” Systematic Zoology, vol. 22, pp. 50-54, 1976.
[32] D.L. Swofford, G.J. Olsen, P.J. Waddel, and D.M Hillis, “Phylogenetic Inference,” Molecular Systematics, D.M. Hillis, C. Moritz, and B.K. Mable, eds., pp. 407-509. Sunderland, Mass.: Sinauer Assoc., 1996.
[33] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W.H. Freeman, 1979.
[34] M. Yannakakis, “Computing the Minimum Fill-In Is NP-Complete,” SIAM J. Algebraic and Discrete Methods, vol. 2, no. 1, pp. 77-79, 1981.
[35] M. Yannakakis, “Node-Deletion Problems on Bipartite Graphs,” SIAM J. Computing, vol. 10, pp. 310-326, 1981.
[36] A. Natanzon, R. Shamir, and R. Sharan, “Complexity Classification of Some Edge Modification Problems,” Discrete Applied Math., vol. 113, no. 1, pp. 109-128, 2001.
[37] R.G. Downey and M.R. Fellows, Parameterized Complexity. Springer, 1997.
[38] L. Cai, “Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties,” Information Processing Letters, vol. 58, pp. 171-176, 1996.
[39] D. Gusfield, “Efficient Algorithms for Inferring Evolutionary History,” Networks, vol. 21, pp. 19-28, 1992.
[40] J.G. Burleigh, D. Chen, O. Eulenstein, D. Fernández-Baca, and M.J. Sanderson, “Minimum Flip Supertrees,” Phylogenetic Supertrees: The Book, Kluwer, to appear.
[41] D. Chen, L. Diao, O. Eulenstein, D. Fernández-Baca, and M.J. Sanderson, “Flipping: A Supertree Construction Method,” Bioconsensus, DIMACS: Series in Discrete Math. and Theoretic Computer Science, vol. 61, pp. 135-160, Providence, R.I.: Am. Math. Soc., 2003.
[42] D. Chen, O. Eulenstein, and D. Fernández-Baca, “Rainbow: A Toolbox for Phylogenetic Supertree Construction and Analysis,” Bioinformatics Advance Access, 2004.

Index Terms:
Phylogenetic tree, supertree, tree assembly, NP-completeness.
Citation:
Duhong Chen, Oliver Eulenstein, David Fern?ndez-Baca, Michael Sanderson, "Minimum-Flip Supertrees: Complexity and Algorithms," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 3, no. 2, pp. 165-173, April-June 2006, doi:10.1109/TCBB.2006.26
Usage of this product signifies your acceptance of the Terms of Use.