This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Framework for Three-Dimensional Simulation of Morphogenesis
October-December 2005 (vol. 2 no. 4)
pp. 273-288

Abstract—We present CompuCell3D, a software framework for three-dimensional simulation of morphogenesis in different organisms. CompuCell3D employs biologically relevant models for cell clustering, growth, and interaction with chemical fields. CompuCell3D uses design patterns for speed, efficient memory management, extensibility, and flexibility to allow an almost unlimited variety of simulations. We have verified CompuCell3D by building a model of growth and skeletal pattern formation in the avian (chicken) limb bud. Binaries and source code are available, along with documentation and input files for sample simulations, at http://compucell.sourceforge.net.

[1] M.S. Alber, T. Glimm, H.G.E. Hentschel, B. Kazmiercazk, and S.A. Newman, “Stability of $N{\hbox{-}}{\rm{Dimensional}}$ Patterns in a Generalized Turing System: Implications for Biological Pattern Formation,” Nonlinearity, vol. 18, no. 1, pp. 125-138, 2005.
[2] M.S. Alber, H.G.E. Hentschel, B. Kazmiercazk, and S.A. Newman, “Existence of Solutions to a New Model of Biological Pattern Formation,” J. Math. Analysis and Applications, 2005.
[3] M.S. Alber, Y. Jiang, and M.A. Kiskowski, “Lattice Gas Cellular Automaton Model for Rippling and Aggregation in Myxobacteria,” Physica D, vol. 191, nos. 3-4, pp. 343-358, 2004.
[4] M.S. Alber, M.A. Kiskowski, J.A. Glazier, and Y. Jiang, “On Cellular Automaton Approaches to Modeling Biological Cells,” IMA Math. Systems Theory in Biology, Comm., and Finance, J. Rosenthal and D.S. Gilliam, eds., vol. 134, pp. 1-39, Springer-Verlag, 2003.
[5] M.S. Alber, M.A. Kiskowski, and Y. Jiang, “Two-Stage Aggregate Formation via Streams in Myxobacteria,” Physical Rev. Letters, vol. 93:068301, 2004.
[6] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns Applied. Reading, Mass.: Addison-Wesley, 2001.
[7] A. Arkin, J. Ross, and H.H. McAdams, “Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in Phage Lambda-Infected Escherichia Coli Cells,” Genetics, vol. 149, no. 4, pp. 1633-1648, 1998.
[8] S. Artz and S. Trimper, “Competing Glauber and Kawasaki Dynamics,” Int'l J. Modern Physics B, vol. 12, no. 23, pp. 2385-2392, 1998.
[9] M. Asipauskas, M. Aubouy, J.A. Glazier, F. Graner, and Y. Jiang, “A Texture Tensor to Quantify Deformations: The Example of Two-Dimensional Flowing Foams,” Granular Matter, vol. 5, no. 2, pp. 71-74, 2003.
[10] J.B. Bassingthwaighte, “Strategies for the PHYSIOME Project,” Annals of Biomedical Eng., vol. 28, no. 8, pp. 1043-1058, 2000.
[11] D.A. Beysens, G. Forgacs, and J.A. Glazier, “Cell Sorting is Analogous to Phase Ordering in Fluids,” Proc. Nat'l Academy of Science, vol. 97, no. 17, pp. 9467-9471, 2000.
[12] D.A. Beysens, G. Forgacs, and J.A. Glazier, “Embryonic Tissues are Viscoelastic Materials,” Canadian J. Physics, vol. 78, no. 3, pp. 243-251, 2000.
[13] BioSPICE, Biospice Community Web Site: Biology in Silico, https:/community.biospice.org, 2005.
[14] C. Blilie, “Patterns in Scientific Software; An Introduction,” Computing in Science and Eng., vol. 4, no. 3, pp. 48-53, 2002.
[15] Cell-O-Sim, Cell-O-Sim Web site, http://mbi.dkfz-heidelberg.de/projects/cellsim cellosim, 2005.
[16] R. Chaturvedi, C. Huang, J.A. Izaguirre, S.A. Newman, J.A. Glazier, and M.S. Alber, “A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb,” Lecture Notes in Computer Science, vol. 3305, pp. 543-552, Springer Verlag, 2004.
[17] R. Chaturvedi, C. Huang, B. Kazmierczak, T. Schneider, J.A. Izaguirre, S.A. Newman, J.A. Glazier, and M.S. Alber, “On Multiscale Approaches to 3-Dimensional Modeling Of Morphogenesis,” J. Royal Soc. Interface, vol. 2, pp. 237-253, 2005.
[18] R. Chaturvedi, J.A. Izaguirre, C. Huang, T. Cickovski, P. Virtue, G. Thomas, G. Forgacs, M.S. Alber, H.G.E. Hentschel, S.A. Newman, and J.A. Glazier, “Multi-Model Simulations of Chicken Limb Morphogenesis,” Lecture Notes in Computational Science, vol. 2659, pp. 39-49, Springer-Verlag, 2003.
[19] T. Cickovski and J.A. Izaguirre, “Biologo, A Domain-Specific Language for Morphogenesis,” ACM Trans. Programming Languages and Systems, http://www.nd.edu/tcickovsacmtr2e.pdf, 2005.
[20] J. Coffland, 2003, Basicutils, http://compucell.sourceforge.net/phpwiki/ index.phpBasicUtils.
[21] COMPUCELL, “CompuCell: A Framework for Three-Dimensional Simulation of Morphogenesis,” http://sourceforge.net/projectscompucell /, Sept. 2004.
[22] E.J. Crampin, W.W. Hackborn, and P.K. Maini, “Pattern Formation in Reaction-Diffusion Models with Nonuniform Domain Growth,” Bull. Math. Biology, vol. 64, no. 4, pp. 747-769, 2002.
[23] D. Dan and J.A. Glazier, “Study of Diffusion and Chemotaxis in Cell Motion Using Cellular Potts Model,” submitted for publication, 2005.
[24] DARPA, Darpa news release, DARPA Releases BioSPICE Software, https://community.biospice.org/publicbio_release.pdf , 2002.
[25] R. Dillon and H.G. Othmer, “A Mathematical Model for Outgrowth and Spatial Patterning of the Vertebrate Limb Bud,” J. Theoretical Biology, vol. 197, no. 3, pp. 297-330, 1999.
[26] D. Duguay, R.A. Foty, and M.S. Steinberg, “Cadherin-Mediated Cell Adhesion and Tissue Segregation: Qualitative and Quantitative Determinants,” Developmental Biology, vol. 253, no. 2, pp. 309-323, 2003.
[27] E-Cell, Inst. for Advanced Biosciences: E-cell Project, http:/www.e-cell.org, 2005.
[28] R. Edwards, H.T. Siegelmann, K. Aziza, and L. Glass, “Symbolic Dynamics and Computation in Model Gene Networks,” Chaos, vol. 11, no. 1, pp. 160-169, 2001.
[29] B. Ermentrout, “Stripes or Spots? Nonlinear Effects in Bifurcation of Reaction-Diffusion Equations on the Square,” Proc. Royal Soc. London A., vol. 434, pp. 413-417, 1991.
[30] R.A. Foty, C.M. Pfleger, G. Forgacs, and M.S. Steinberg, “Surface Tensions of Embryonic Tissues Predict Their Mutual Envelopment Behavior,” Development, vol. 122, no. 5, pp. 1611-1620, 1996.
[31] D.T. Gillespie, “A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions,” J. Chemical Physics, vol. 22, no. 4, pp. 403-434, 1976.
[32] J.A. Glazier and F. Graner, “Simulation of the Differential Adhesion Driven Rearrangement of Biological Cells,” Physical Rev. E, vol. 47, no. 3, pp. 2128-2154, 1993.
[33] D. Godt and U. Tepass, “Drosophila Oocyte Localization is Mediated by Differential Cadherin-Based Adhesion,” Nature, vol. 395, no. 6700, pp. 387-391, 1998.
[34] A. Gonzalez-Reyes and D. St. Johnston, “The Drosophila Ap Axis is Polarised by the Cadherin-Mediated Positioning of the Oocyte,” Development, vol. 125, no. 18, pp. 3635-3644, 1998.
[35] F. Graner and J.A. Glazier, “Simulation of Biological Cell Sorting Using a Two-Dimensional Extended Potts Model,” Physical Rev. Letters, vol. 69, no. 13, pp. 2013-2016, 1992.
[36] T. Hayashi and R. Carthew, “Surface Mechanics Mediate Pattern Formation in the Developing Retina,” Nature, vol. 431, no. 7009, pp. 647-652, 2004.
[37] L.I. Held, Imaginal Discs: The Genetic and Cellular Logic of Pattern Formation. New York: Cambridge Univ. Press, 2002.
[38] H.G.E. Hentschel, T. Glimm, J.A. Glazier, and S.A. Newman, “Dynamical Mechanisms for Skeletal Pattern Formation in the Vertebrate Limb,” Proc. Royal Soc. London B Biolgical Science, vol. 271, no. 1549, pp. 1713-1722, 2004.
[39] M.L. Hines and N.T. Carnevale, “The NEURON Simulation Environment,” Neural Computation, vol. 9, no. 6, pp. 1179-1209, 1997.
[40] P. Hogeweg, “Evolving Mechanisms of Morphogenesis: On the Interplay between Differential Adhesion and Cell Differentiation,” J. Theoretical Biology, vol. 203, no. 4, pp. 317-333, 2000.
[41] P. Hogeweg, “Shapes in the Shadow: Evolutionary Dynamics of Morphogenesis,” Artificial Life, vol. 6, no. 1, pp. 85-101, 2000.
[42] P. Hogeweg, “Computing an Organism: On the Interface between Informatic and Dynamic Processes,” Biosystems, vol. 64, nos. 1-3, pp. 97-109, 2002.
[43] V. Hösel and V. Liebscher, “Some Thoughts on the Modeling of Biofilms,” Math. and Statistics, http://ibb.gsf.de/preprints/1999pp99-27.ps , 1999.
[44] J.A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland, G. Thomas, G. Forgacs, M.S. Alber, G. Hentschel, S.A. Newman, and J.A. Glazier, “CompuCell, a Multimodel Framework for Simulation of Morphogenesis,” Bioinformatics, vol. 20, no. 7, pp. 1129-1137, 2004.
[45] Y. Jiang, M. Asipauskas, J.A. Glazier, M. Aubouy, and F. Graner, “Ab Initio Derivation of Stress and Strain in Fluid Foams,” Foams, Emulsions and their Applications, P. Zitha, J. Banhart, and G. Verbist, eds., pp. 297-304, Verlag MIT Publishing, 2000.
[46] Y. Jiang, H. Levine, and J.A. Glazier, “Possible Cooperation of Differential Adhesion and Chemotaxis in Mound Formation of Dictyostelium,” European Biophysics J., vol. 75, no. 6, pp. 2615-2625, 1998.
[47] Y. Jiang, P. Swart, A. Saxena, M. Asipauskas, and J.A. Glazier, “Hysteresis and Avalanches in Two-Dimensional Foam Rheology Simulations,” Physical Rev. E, vol. 59, no. 5, pp. 5819-5832, 1999.
[48] H. De Jong, “Modeling and Simulation of Genetic Regulatory Systems: A Literature Review,” J. Computational Biology, vol. 9, no. 1, pp. 69-105, 2002.
[49] W. Keller, P. König, and T.J. Richmond, “Crystal Structure of a Bzip/DNA Complex at 2.2 Å: Determinants of DNA Specific Recognition,” J. Molecular Biology, vol. 254, no. 4, pp. 657-667, 1995.
[50] M.A. Kiskowski, M.S. Alber, G.L. Thomas, J.A. Glazier, N.B. Bronstein, J. Pu, and S.A. Newman, “Interplay between Activator-Inhibitor Coupling and Cell-Matrix Adhesion in a Cellular Automaton Model for Chondrogenic Patterning,” Developmental Biology, vol. 271, no. 2, pp. 372-387, 2004.
[51] M.A. Kiskowski, Y. Jiang, and M.S. Alber, “Role of Streams in Myxobacteria Aggregate Formation,” Physical Biology, vol. 1, no. 3, pp. 173-183, 2004.
[52] S.P. Kumar and J.C. Feidler, “Biospice, 2,” Omics: A J. Integrative Biology, vol. 7, no. 4, p. 335, 2003.
[53] K.A. Landman, G.J. Pettet, and D.F. Newgreen, “Mathematical Models of Cell Colonization of Uniformly Growing Domains,” Bull. Math. Biology, vol. 65, no. 2, pp. 235-262, 2003.
[54] J.H. Lewis, “Fate Maps and the Pattern of Cell Division: A Calculation for the Chick Wing-Bud,” J. Embryology and Experimental Morphogenesis, vol. 33, no. 2, pp. 419-434, 1975.
[55] A.F.M. Marée, “From Pattern Formation to Morphogenesis,” PhD thesis, Utrecht Univ., The Netherlands, Oct. 2000.
[56] A.F.M. Marée and P. Hogeweg, “How Amoeboids Self-Organize into a Fruiting Body: Multicellular Coordination in Dictyostelium Discoideum,” Proc. Nat'l Academy of Science, vol. 98, no. 7, pp. 3879-3883, 2001.
[57] A.F.M. Marée, A.V. Panfilov, and P. Hogeweg, “Migration and Thermotaxis of Dictyostelium Discoideum Slugs, A Model Study,” J. Theoretical Biology, vol. 199, no. 3, pp. 297-309, 1999.
[58] A.F.M. Marée, A.V. Panfilov, and P. Hogeweg, “Phototaxis during the Slug Stage of Dictyostelium Discoideum: A Model Study,” Proc. Royal Soc. of London Series B-Biological Sciences, vol. 266, no. 1426, pp. 1351-1360, 1999.
[59] H. Meinhardt, Models of Biological Pattern Formation. London: Academic Press, 1982.
[60] H. Meinhardt, “Pathways and Building Blocks: Review of “Modularity in Development and Evolution,”” Nature, G. Schlosser and G.P. Wagner, eds., vol. 430, no. 7003, p. 970, 2004.
[61] R.M.H. Merks and J.A. Glazier, “A Cell-Centered Approach to Developmental Biology,” Physica A, vol. 352, no. 1, pp. 113-130, 2005.
[62] R.M.H. Merks, S.A. Newman, and J.A. Glazier, “Cell-Oriented Modeling of In Vitro Capillary Development,” Proc. Cellular Automata: Sixth Int'l Conf. Cellular Automata for Research and Industry, ACRI 2004, vol. 3305, pp. 425-434, 2004.
[63] T. Miura and K. Shiota, “Tgf-beta 2 Acts as an “Activator” Molecule in Reaction-Diffusion Model and is Involved in Cell Sorting Phenomenon in Mouse Limb Micromass Culture,” Developmental Dynamics, vol. 217, no. 3, pp. 241-249, 2000.
[64] M.Z. Moftah, S.A. Downie, N.B. Bronstein, N. Mezentseva, J. Pu, P.A. Maher, and S.A. Newman, “Ectodermal FGFs Induce Perinodular Inhibition of Limb Chondrogenesis in Vitro and in Vivo via FGF Receptor 2,” Developmental Biology, vol. 249, no. 2, pp. 270-282, 2002.
[65] A. Mogilner and L. Edelstein-Keshet, “Regulation of Actin Dynamics in Rapidly Moving Cells: A Quantitative Analysis,” Biophysics J, vol. 83, no. 3, pp. 1237-1258, 2002.
[66] J.C.M. Mombach, R.M.C. de Almeida, G.L. Thomas, A. Upadhyaya, and J.A. Glazier, “Bursts and Cavity Formation in Hydra Cell Aggregates: Experiments and Simulations,” Physica A, vol. 297, nos. 3-4, pp. 495-508, 2001.
[67] J.C. M. Mombach and J.A. Glazier, “Single Cell Motion in Aggregates of Embryonic Cells,” Physical Rev. Letters, vol. 76, no. 16, pp. 3032-3035, 1996.
[68] J.C. M. Mombach, D. Robert, F. Graner, G. Gillet, G.L. Thomas, M. Idiart, and J.P. Rieu, “Rounding of Aggregates of Biological Cells: Experiments and Simulations,” Physica A, vol. 352, pp. 525-534, 2005.
[69] NEURON, Neuron Web site, 2005, http://www.neuron.yale.eduneuron.
[70] M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics. Oxford Univ. Press, 1999.
[71] S.A. Newman and H.L. Frisch, “Dynamics of Skeletal Pattern Formation in Developing Chick Limb,” Science, vol. 205, no. 4407, pp. 662-668, 1979.
[72] OGLE, Ogle Large-Scale Scientific Data Visualizer, 2001, http://www.cora.nwra.comOgle.
[73] W.B. Ouchi, J.A. Glazier, J.P. Rieu, A. Upadhyaya, and Y. Sawada, “Improving the Realism of the Cellular Potts Model in Simulation of Biological Cells,” Physica A, vol. 329, nos. 3-4, pp. 451-458, 2003.
[74] L. Raeymaekers, “Dynamics of Boolean Networks Controlled by Biologically Meaningful Functions,” J. Theoretical Biology, vol. 218, no. 3, pp. 331-341, 2002.
[75] R.D. Riddle, R.L. Johnson, E. Laufer, and C. Tabin, “Sonic Hedgehog Mediates the Polarizing Activity of the ZPA,” Cell, vol. 75, no. 7, pp. 1401-1416, 1993.
[76] J.P. Rieu, A. Upadhyaya, J.A. Glazier, B.O. Noryuki, and Y. Sawada, “Diffusion and Deformations of Single Hydra Cells in Cellular Aggregates,” European Biophysics J., vol. 79, no. 4, pp. 1903-1914, 2000.
[77] N.J. Savill and P. Hogeweg, “Modelling Morphogenesis: From Single Cells to Crawling Slugs,” J. Theoretical Biology, vol. 184, no. 3, pp. 229-235, 1997.
[78] J. Schaff, C.C. Fink, B. Slepchenko, J.H. Carson, and L.M. Loew, “A General Computational Framework for Modeling Cellular Structure and Function,” European Biophysics J., vol. 73, no. 3, pp. 1135-1145, 1997.
[79] A. Shalloway and J.R. Trott, Design Patterns Explained: A New Perspective on Object-Oriented Design. Boston: Addison-Wesley, 2002.
[80] M.S. Steinberg, “Reconstruction of Tissues by Dissociated Cells,” Science, vol. 141, no. 3579, pp. 401-408, 1963.
[81] M.S. Steinberg, “Goal-Directedness in Embryonic Development,” Integrative Biology, vol. 1, pp. 49-59, 1998.
[82] M.A. Stijnman, R.H. Bisseling, and G.T. Barkema, “Partitioning 3D Space for Parallel Many-Particle Simulations,” Computer Physics Comm., vol. 149, no. 3, pp. 121-134, 2003.
[83] K. Takahashi, N. Ishikawa, Y. Sadamoto, S. Ohta, A. Shiozawa, F. Miyoshi, Y. Naito, Y. Nakayama, and M. Tomita, “E-CELL2: Multi-Platform E-CELL Simulation System,” Bioinformatics, vol. 19, no. 13, pp. 1727-1729, 2003.
[84] D.W. Thompson, On Growth and Form. Cambridge Univ. Press, 1917.
[85] A. Turing, “The Chemical Basis of Morphogenesis,” Phil. Trans. Roy. Soc. London, B, vol. 237, pp. 37-72, 1952.
[86] UNFP, User Notes on Fortran Programming (UNFP): An Open Cooperative Practical Guide, 2005, http://www.ibiblio.org/pub/languages/fortran unfp.html.
[87] A. Upadhyaya, “Thermodynamic and Fluid Properties of Cells, Tissues and Membranes,” PhD thesis, Univ. of Notre Dame, 2000.
[88] A. Upadhyaya, J.P. Rieu, J.A. Glazier, and Y. Sawada, “Anomalous Diffusion in Two-Dimensional Hydra Cell Aggregates,” Physica A, vol. 293, nos. 3-4, pp. 549-558, 2001.
[89] Virtual Cell, National Resource for Cell Analysis and Modeling, http:/www.nrcam.uchc.edu, 2005.
[90] G. von Dassow and E. Meir, “Exploring Modularity with Dynamical Models of Gene Networks,” Modularity in Development and Evolution, G. Schlosser and G.P. Wagner, eds., pp. 244-287, 2004.
[91] Y. Wallach and V. Conrad, “On Block Parallel Methods for Solving Linear Equations,” IEEE Trans. Computers, vol. 29, no. 5, pp. 354-359, 1980.
[92] S. Wong, “A Cursory Study of the Thermodynamics and Mechanical Properties of Monte-Carlo Simulations of the Ising Model,” PhD thesis, Univ. of Notre Dame, Notre Dame, Indiana, 2005.
[93] M. Zajac, “Modeling Convergent Extension by Way of Anisotopic Differential Adhesion,” PhD thesis, Univ. of Notre Dame, Notre Dame, Indiana, 2002.
[94] M. Zajac, G.L. Jones, and J.A. Glazier, “Model of Convergent Extension in Animal Morphogenesis,” Physical Rev. Letters, vol. 85, no. 9, pp. 2022-2025, 2000.
[95] M. Zajac, G.L. Jones, and J.A. Glazier, “Simulating Convergent Extension by Way of Anisotropic Differential Adhesion,” J. Theoretical Biology, vol. 222, no. 2, pp. 247-259, 2003.
[96] W. Zeng, G.L. Thomas, S.A. Newman, and J.A. Glazier, “A Novel Mechanism for Mesenchymal Condensation during Limb Chondrogenesis in Vitro,” Math. Modeling and Computing in Biology and Medicine: Proc. Fifth Conf. European Soc. Math. and Theoretical Biology, pp. 80-86, 2002.

Index Terms:
Cellular Potts Model (CPM), biological development, reaction-diffusion, cellular automata, morphogenesis, Extensible Markup Language (XML).
Citation:
Trevor M. Cickovski, Chengbang Huang, Rajiv Chaturvedi, Tilmann Glimm, H. George E. Hentschel, Mark S. Alber, James A. Glazier, Stuart A. Newman, Jes?s A. Izaguirre, "A Framework for Three-Dimensional Simulation of Morphogenesis," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 2, no. 4, pp. 273-288, Oct.-Dec. 2005, doi:10.1109/TCBB.2005.46
Usage of this product signifies your acceptance of the Terms of Use.