
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Steven N. Evans, Tandy Warnow, "Unidentifiable Divergence Times in RatesacrossSites Models," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 1, no. 3, pp. 130134, JulySeptember, 2004.  
BibTex  x  
@article{ 10.1109/TCBB.2004.34, author = {Steven N. Evans and Tandy Warnow}, title = {Unidentifiable Divergence Times in RatesacrossSites Models}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {1}, number = {3}, issn = {15455963}, year = {2004}, pages = {130134}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2004.34}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Unidentifiable Divergence Times in RatesacrossSites Models IS  3 SN  15455963 SP130 EP134 EPD  130134 A1  Steven N. Evans, A1  Tandy Warnow, PY  2004 KW  Phylogenetic inference KW  random effects KW  gamma distribution KW  identifiability. VL  1 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] J. Chang, “Full Reconstruction of Markov Models on Evolutionary Trees: Identifiability and Consistency,” Math. Biosciences, vol. 137, pp. 5173, 1996.
[2] J. Felsenstein, “Cases in Which Parsimony and Compatibility Methods Will be Positively Misleading,” Systematic Zoology, vol. 27, pp. 401410, 1978.
[3] J. Felsenstein, Inferring Phylogenies. Mass.: Sinauer Associates, 2004.
[4] S. Guindon and O. Gascuel, “A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood,” Systematic Biology, vol. 52, no. 5, pp. 696704, 2003.
[5] G.R. Grimmett and D.R. Stirzaker, Probability and Random Processes, third ed. New York: Oxford Univ. Press, 2001.
[6] M. Hasegawa, H. Kishino, and T. Yano, “Man's Place in Homonoidea as Inferred from Molecular Clocks of DNA,” J. Molecular Evolution, vol. 2, pp. 132147, 1987.
[7] J.P. Huelsenbeck and R. Ronquist, “MrBayes: Bayesian Inference of Phylogeny,” Bioinformatics, vol. 17, pp. 754755, 2001.
[8] L. Jin and M. Nei, “Limitations of Evolutionary Parsimony Methods of Phylogenetic Analysis,” Molecular Biology and Evolution, vol. 7, pp. 82102, 1990.
[9] S.G. Krantz and H.R. Parks, The Implicit Function Theorem: History, Theory, and Applications. Mass.: Birkhäuser Boston Inc., 2002.
[10] P. Lewis, “A Genetic Algorithm For Maximum Likelihood Phylogeny Inference Using Nucleotide Sequence Data,” Molecular Biology and Evolution, vol. 15, pp. 277283, 1998.
[11] M. Nei, R. Chakraborty, and P.A. Fuerst, “Infinite Allele Model with Varying Mutation Rate,” Proc. Nat'l Academy of Sciences USA, vol. 73, pp. 41644168, 1976.
[12] G.J. Olsen, “Earliest Phylogenetic Branchings: Comparing rRNABased Evolutionary Trees Inferred with Various Techniques,” Proc. Cold Spring Harbor Symp. Quantitative Biology, vol. 52, pp. 825837, 1987.
[13] G. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek, “FastDNAml: A Tool for Construction of Phylogenetic Trees of DNA Sequences Using Maximum Likelihood,” Computations in Applied Biosciences, vol. 10, no. 1, pp. 4148, 1994.
[14] S.L.K. Pond and S. Muse, “Hyphy Package Distribution and Documentation Page,” http:/www.hyphy.org, 2000.
[15] J.H. Reeves, “Heterogeneity in the Substitution Process of Amino Acid Sites of Proteins Coded for by Mitochondrial DNA,” J. Molecular Evolution, pp. 1731, 1992.
[16] J.S. Rogers, “Maximum Likelihood Estimation of Phylogenetic Trees is Consistent When Substitution Rates Vary According to the Invariable Sites Plus Gamma Distribution,” Systematic Biology, vol. 50 pp. 713722, 2001.
[17] D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis, “Phylogenetic Inference,” Molecular Systematics, D.M. Hillis, C. Moritz, and B.K. Mable, eds., Mass.: Sinauer Associates, 1996.
[18] C. Semple and M. Steel, “Phylogenetics,” Oxford Lecture Series in Math. and Its Applications, vol. 24, Oxford Univ. Press, 2003.
[19] M.A. Steel, L.A. Székely, and M.D. Hendy, “Reconstructing Trees When Sequence Sites Evolve at Variable Rates,” J. Computational Biology, vol. 1, pp. 153163, 1994.
[20] M.A. Steel, “Recovering a Tree from the Leaf Colourations it Generates under a Markov Model,” Applied Math. Letters, vol. 7, pp. 1924, 1994.
[21] D. Swofford, PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods), version 4.0, Florida State Univ., 2002.
[22] C. Tuffley and M. Steel, “Links between Maximum Likelihood and Maximum Parsimony under a Simple Model of Site Substitution,” Bull. of Math. Biology, vol. 59, pp. 581607, 1997.
[23] T. Uzzell and K.W. Corbin, “Fitting Discrete Probability Distributions to Evolutionary Events,” Science, vol. 72, pp. 10891096, 1971.
[24] Z. Yang, “MaximumLikelihood Estimation of Phylogeny from DNA Sequences When Substitution Rates Differ over Sites,” Molecular Biology and Evolution, vol. 10, pp. 13961401, 1996.