The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - July-Sept. (2014 vol.5)
pp: 301-313
Munawar Hayat , School of Computer Science and Software Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, Australia
Mohammed Bennamoun , School of Computer Science and Software Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, Australia
ABSTRACT
Most of the existing research on 3D facial expression recognition has been done using static 3D meshes. 3D videos of a face are believed to contain more information in terms of the facial dynamics which are very critical for expression recognition. This paper presents a fully automatic framework which exploits the dynamics of textured 3D videos for recognition of six discrete facial expressions. Local video-patches of variable lengths are extracted from numerous locations of the training videos and represented as points on the Grassmannian manifold. An efficient graph-based spectral clustering algorithm is used to separately cluster these points for every expression class. Using a valid Grassmannian kernel function, the resulting cluster centers are embedded into a Reproducing Kernel Hilbert Space (RKHS) where six binary SVM models are learnt. Given a query video, we extract video-patches from it, represent them as points on the manifold and match these points with the learnt SVM models followed by a voting based strategy to decide about the class of the query video. The proposed framework is also implemented in parallel on 2D videos and a score level fusion of 2D & 3D videos is performed for performance improvement of the system. The experimental results on BU4DFE data set show that the system achieves a very high classification accuracy for facial expression recognition from 3D videos.
INDEX TERMS
Videos, Three-dimensional displays, Feature extraction, Face recognition, Hidden Markov models, Face, Manifolds,SVM on Grassmannian manifold, Facial expression recognition, 3D videos, Grassmannian manifold, spectral clustering
CITATION
Munawar Hayat, Mohammed Bennamoun, "An Automatic Framework for Textured 3D Video-Based Facial Expression Recognition", IEEE Transactions on Affective Computing, vol.5, no. 3, pp. 301-313, July-Sept. 2014, doi:10.1109/TAFFC.2014.2330580
31 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool