The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - Sept. (2014 vol.2)
pp: 314-323
Lin Gu , , University of Aizu, Fukushima, Japan
Deze Zeng , , University of Aizu, Fukushima, Japan
Peng Li , , University of Aizu, Fukushima, Japan
Song Guo , , University of Aizu, Fukushima, Japan
ABSTRACT
The explosive growth of demands on big data processing imposes a heavy burden on computation, storage, and communication in data centers, which hence incurs considerable operational expenditure to data center providers. Therefore, cost minimization has become an emergent issue for the upcoming big data era. Different from conventional cloud services, one of the main features of big data services is the tight coupling between data and computation as computation tasks can be conducted only when the corresponding data are available. As a result, three factors, i.e., task assignment, data placement, and data movement, deeply influence the operational expenditure of data centers. In this paper, we are motivated to study the cost minimization problem via a joint optimization of these three factors for big data services in geo-distributed data centers. To describe the task completion time with the consideration of both data transmission and computation, we propose a 2-D Markov chain and derive the average task completion time in closed-form. Furthermore, we model the problem as a mixed-integer nonlinear programming and propose an efficient solution to linearize it. The high efficiency of our proposal is validated by extensive simulation-based studies.
INDEX TERMS
Big data, Information management, Data handling, Data storage systems, Distributed databases, Minimization, Routing protocols,task assignment, Big data, data flow, data placement, distributed data centers, cost minimization
CITATION
Lin Gu, Deze Zeng, Peng Li, Song Guo, "Cost Minimization for Big Data Processing in Geo-Distributed Data Centers", IEEE Transactions on Emerging Topics in Computing, vol.2, no. 3, pp. 314-323, Sept. 2014, doi:10.1109/TETC.2014.2310456
38 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool