The Community for Technology Leaders
RSS Icon
pp: 1
Optimizing cloud gaming experience is no easy task due to the complex tradeoff between gamer Quality of Experience (QoE) and provider net profit. We tackle the challenge and study an optimization problem to maximize the cloud gaming provider’s total profit while achieving just-good-enough QoE. We conduct measurement studies to derive the QoE and performance models. We formulate and optimally solve the problem. The optimization problem has exponential running time, and we develop an efficient heuristic algorithm. We also present an alternative formulation and algorithms for closed cloud gaming services with dedicated infrastructures, where the profit is not a concern and overall gaming QoE needs to be maximized. We present a prototype system and testbed using off-the-shelf virtualization software, to demonstrate the practicality and efficiency of our algorithms. Our experience on realizing the testbed sheds some lights on how cloud gaming providers may build up their own profitable services. Last, we conduct extensive trace-driven simulations to evaluate our proposed algorithms. The simulation results show that the proposed heuristic algorithms: (i) produce close-to-optimal solutions, (ii) scale to large cloud gaming services with 20000 servers and 40000 gamers, and (iii) outperform the state-of-the-art placement heuristic, e.g., by up to 3.5 times in terms of net profits.
Cheng-Hsin Hsu, "Placing Virtual Machines to Optimize Cloud Gaming Experience", IEEE Transactions on Cloud Computing, , no. 1, pp. 1, PrePrints PrePrints, doi:10.1109/TCC.2014.2338295
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool