This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology
Rule Extraction from Support Vector Machines and Its Applications
Lyon, France
August 22-August 27
ISBN: 978-0-7695-4513-4
Support Vector Machines are the state-of-the-art tools in data mining. However, their strength are also their main weakness, as the generated nonlinear models are typically regarded as incomprehensible black-box models. Therefore, opening the black-boxor making SVMs explainable became more important and necessary in areas such as medical diagnosis and credit evaluation. Rule extraction from SVMs, which is in order to make SVMs more explainable has developed during recent years. However, existing rule extracted algorithms have limitations in real applications especially when the problems are large scale with high dimensions. In this paper, we combined two feature selection techniques with rule extraction from SVMs in order to deal with this case. And we also proposed a new criteria to evaluate the extracted rules in order to rich the evaluation standards. Numerical experiments show the efficiency of our method.
Index Terms:
Support Vector Machine, Rule extraction, Feature selection
Citation:
Si Xiao Yang, Ying Jie Tian, Chun Hua Zhang, "Rule Extraction from Support Vector Machines and Its Applications," wi-iat, vol. 3, pp.221-224, 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 2011
Usage of this product signifies your acceptance of the Terms of Use.