The Community for Technology Leaders
RSS Icon
Subscribe
Lyon, France
Aug. 22, 2011 to Aug. 27, 2011
ISBN: 978-0-7695-4513-4
pp: 193-196
ABSTRACT
The complicated alignment and small translation unit make the word based approaches extremely complex and thereby hard to achieve promising performance. The employment of phrase largely addresses the alignment problem. On the other hand, the phrase-based SMT (PBSMT) models suffer more from data sparse problem and behave less flexible than word-based model because of the larger translation unit -- phrase. Therefore we conduct our research on enhancing phrase based SMT with word-level reordering model (based on source dependency tree). Experimental results on the NIST Chinese-English machine translation data show that our reordering models significantly improve the baseline, a state-of-the-art reordering model, which is widely used in phrase-based SMT system.
INDEX TERMS
phrase-based SMT, source dependency tree, word-level reordering model
CITATION
Pengyuan Liu, Shui Liu, Sheng Li, "Word-Level Reordering Model for Phrase-Based SMT", WI-IAT, 2011, Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM International Conference on, Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM International Conference on 2011, pp. 193-196, doi:10.1109/WI-IAT.2011.200
32 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool