The Community for Technology Leaders
RSS Icon
Subscribe
Lyon
Aug. 22, 2011 to Aug. 27, 2011
ISBN: 978-1-4577-1373-6
pp: 253-256
ABSTRACT
The Latent Dirichlet Allocation model is an unsupervised generative model that is widely used for topic modelling in text. We propose to add supervision to the model in the form of domain knowledge to direct the focus of topics to more relevant aspects than the topics produced by standard LDA. Experimental results demonstrate the effectiveness of our method. We also propose a novel Twofold-LDA model to improve the current output of LDA in order to visualize results in graphical form, which can ultimately be used by potential customers. Experiments show the benefit of this new output, with the ability to produce topics focused on our desired aspects in a user friendly chart.
INDEX TERMS
senitment analysis, topic modelling
CITATION
Nicola Burns, Yaxin Bi, Hui Wang, Terry Anderson, "A Twofold-LDA Model for Customer Review Analysis", WI-IAT, 2011, 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies, 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies 2011, pp. 253-256, doi:10.1109/WI-IAT.2011.73
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool