The Community for Technology Leaders
RSS Icon
Subscribe
Orlando, FL, USA
March 24, 2002 to March 28, 2002
ISBN: 0-7695-1492-8
pp: 217
Ashish Sharma , Louisiana State University
Xinlian Liu , Louisiana State University
Paul Miller , Louisiana State University
Aiichiro Nakano , Louisiana State University
Rajiv K. Kalia , Louisiana State University
Priya Vashishta , Louisiana State University
Wei Zhao , Louisiana State University
Timothy J. Campbell , Logicon Inc.
Andy Haas , Logicon Inc.
ABSTRACT
Recent advances in parallel computing have made it possible for scientists to perform atomistic simulations of materials involving billions of atoms. An Immersive and interactive virtual environment such as ImmersaDesk is an ideal platform for exploring complex material processes in these simulations. However rendering such large datasets at an interactive speed is a major challenge. To solve this problem we have developed a visualization system by incorporating parallel and distributed computing paradigms. The system uses a parallelized fast visibility-culling algorithm based on the octree data structure to reduce the number of atoms sent to the graphics pipeline. An adaptive multiresolution algorithm based on atomic density is employed to further reduce the load on the graphics pipeline. The resulting system renders a billion-atom system at nearly interactive frame rates on a dual processor SGI Onyx2 with an InfiniteReality2 graphics pipeline connected to a 4-node PC cluster.
CITATION
Ashish Sharma, Xinlian Liu, Paul Miller, Aiichiro Nakano, Rajiv K. Kalia, Priya Vashishta, Wei Zhao, Timothy J. Campbell, Andy Haas, "Immersive and Interactive Exploration of Billion-Atom Systems", VR, 2002, Proceedings IEEE Virtual Reality 2002, Proceedings IEEE Virtual Reality 2002 2002, pp. 217, doi:10.1109/VR.2002.996525
86 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool