The Community for Technology Leaders
RSS Icon
Phoenix, Arizona
Nov. 15, 2003 to Nov. 21, 2003
ISBN: 1-58113-695-1
pp: 1
Kai Wang , University of Kentucky, Lexington
Jun Zhang , University of Kentucky, Lexington
Chi Shen , University of Kentucky, Lexington
We investigate the use of the multistep successive preconditioning strategies (MSP) to construct a class of parallel multilevel sparse approximate inverse (SAI) preconditioners. We do not use independent set ordering, but a diagonal dominance based matrix permutation to build a multilevel structure. The purpose of introducing multilevel structure into SAI is to enhance the robustness of SAI for solving difficult problems. Forward and backward preconditioning iteration and two Schur complement preconditioning strategies are proposed to improve the performance and to reduce the storage cost of the multilevel preconditioners. One version of the parallel multilevel SAI preconditioner based on the MSP strategy is implemented. Numerical experiments for solving a few sparse matrices on a distributed memory parallel computer are reported.
Parallel preconditioning, sparse approximate inverse, multilevel pre-conditioning
Kai Wang, Jun Zhang, Chi Shen, "Parallel Multilevel Sparse Approximate Inverse Preconditioners in Large Sparse Matrix Computations", SC, 2003, SC Conference, SC Conference 2003, pp. 1, doi:10.1109/SC.2003.10042
87 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool