This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2012 20th IEEE International Requirements Engineering Conference (RE)
Requirements analysis for a product family of DNA nanodevices
Chicago, IL, USA USA
September 24-September 28
ISBN: 978-1-4673-2783-1
Robyn R. Lutz, Department of Computer Science, Iowa State University, Ames, IA 50011 USA
Jack H. Lutz, Department of Computer Science, Iowa State University, Ames, IA 50011 USA
James I. Lathrop, Department of Computer Science, Iowa State University, Ames, IA 50011 USA
Titus H. Klinge, Department of Computer Science, Iowa State University, Ames, IA 50011 USA
Divita Mathur, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
D. M. Stull, Department of Computer Science, Iowa State University, Ames, IA 50011 USA
Taylor G. Bergquist, Department of Computer Science, Iowa State University, Ames, IA 50011 USA
Eric R. Henderson, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
DNA nanotechnology uses the information processing capabilities of nucleic acids to design self-assembling, programmable structures and devices at the nanoscale. Devices developed to date have been programmed to implement logic circuits and neural networks, capture or release specific molecules, and traverse molecular tracks and mazes. Here we investigate the use of requirements engineering methods to make DNA nanotechnology more productive, predictable, and safe. We use goal-oriented requirements modeling to identify, specify, and analyze a product family of DNA nanodevices, and we use PRISM model checking to verify both common properties across the family and properties that are specific to individual products. Challenges to doing requirements engineering in this domain include the error-prone nature of nanodevices carrying out their tasks in the probabilistic world of chemical kinetics, the fact that roughly a nanomole (a 1 followed by 14 0s) of devices are typically deployed at once, and the difficulty of specifying and achieving modularity in a realm where devices have many opportunities to interfere with each other. Nevertheless, our results show that requirements engineering is useful in DNA nanotechnology and that leveraging the similarities among nanodevices in the product family improves the modeling and analysis by supporting reuse.
Index Terms:
model checking,requirements modeling and analysis,DNA nan-otechnology,goal-oriented,product families
Citation:
Robyn R. Lutz, Jack H. Lutz, James I. Lathrop, Titus H. Klinge, Divita Mathur, D. M. Stull, Taylor G. Bergquist, Eric R. Henderson, "Requirements analysis for a product family of DNA nanodevices," re, pp.211-220, 2012 20th IEEE International Requirements Engineering Conference (RE), 2012
Usage of this product signifies your acceptance of the Terms of Use.