The Community for Technology Leaders
RSS Icon
Subscribe
Tokyo, Japan
Oct. 16, 2001 to Oct. 18, 2001
ISBN: 0-7695-1227-5
pp: 0097
Jacob Barhak , Technion
Anath Fischer , Technion
ABSTRACT
Reverse engineering is an important process in CAD systems today. Yet several open problems lead to a bottleneck in the reverse engineering process. First, because the topology of the object to be reconstructed is unknown, point connectivity relations are undefined. Second, the fitted surface must satisfy global and local shape preservation criteria that are undefined explicitly. In reverse engineering, object reconstruction is based both on parameterization and on fitting. Nevertheless, the above problems are influenced mainly by parameterization. In order to overcome the above problems, this paper proposes a neural network Self Organizing Map (SOM) method for creating a 3D parametric grid. The main advantage of the proposed SOM method is that it detects both the orientation of the grid and the position of the sub-boundaries. The neural network grid converges to the sampled shape through an adaptive learning process. The SOM method is applied directly on 3D sampled data and avoids the projection anomalies common to other methods. The paper also presents boundary correction and growing grid extensions to the SOM method. In the surface fitting stage, an RSEC (Random Surface Error Correction) fitting method based on the SOM method was developed and implemented.
INDEX TERMS
Reverse Engineering, Parameterization, Surface Fitting, SOM, Neural Networks.
CITATION
Jacob Barhak, Anath Fischer, "Adaptive Reconstruction of Freeform Objects with 3D SOM Neural Network Grids", PG, 2001, Computer Graphics and Applications, Pacific Conference on, Computer Graphics and Applications, Pacific Conference on 2001, pp. 0097, doi:10.1109/PCCGA.2001.962862
22 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool