This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2013 IEEE 27th International Symposium on Parallel and Distributed Processing
Cyclops Tensor Framework: Reducing Communication and Eliminating Load Imbalance in Massively Parallel Contractions
Cambridge, MA, USA USA
May 20-May 24
ISBN: 978-1-4673-6066-1
Cyclops (cyclic-operations) Tensor Framework(CTF) is a distributed library for tensor contractions. CTF aims to scale high-dimensional tensor contractions such as those required in the Coupled Cluster (CC) electronic structure method to massively-parallel supercomputers. The framework preserves tensor structure by subdividing tensors cyclically, producing a regular parallel decomposition. An internal virtualization layer provides completely general mapping support while maintaining ideal load balance. The mapping framework decides on the best mapping for each tensor contraction at run-time via explicit calculations of memory usage and communication volume. CTF employs a general redistribution kernel, which transposes tensors of any dimension between arbitrary distributed layouts, yet touches each piece of data only once. Sequential symmetric contractions are reduced to matrix multiplication calls via tensor index transpositions and partial unpacking. The user-level interface elegantly expresses arbitrary-dimensional generalized tensor contractions in the form of a domain specific language. We demonstrate performance of CC with single and double excitations on 8192 nodes of Blue Gene/Q and show that CTF outperforms NWChem on Cray XE6 supercomputers for benchmarked systems.
Index Terms:
Tensile stress,Indexes,Equations,Program processors,Chemistry,Clustering algorithms,Manganese,communication-avoiding algorithms,tensor contractions,Coupled Cluster,Cyclops
Citation:
Edgar Solomonik, Devin Matthews, Jeff Hammond, James Demmel, "Cyclops Tensor Framework: Reducing Communication and Eliminating Load Imbalance in Massively Parallel Contractions," ipdps, pp.813-824, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, 2013
Usage of this product signifies your acceptance of the Terms of Use.