This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
15th International Conference on Pattern Recognition (ICPR'00) - Volume 3
Vector Quantization Based Gaussian Modeling for Speaker Verification
Barcelona, Spain
September 03-September 08
ISBN: 0-7695-0750-6
J. Pelecanos, Queensland University of Technology
S. Myers, Queensland University of Technology
S. Sridharan, Queensland University of Technology
V. Chandran, Queensland University of Technology
Gaussian Mixture Models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner, particularly when computational resources are limited. A method of combining Vector Quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian Mixture Model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases, an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system performance between the VQ Gaussian based technique and GMMs.
Citation:
J. Pelecanos, S. Myers, S. Sridharan, V. Chandran, "Vector Quantization Based Gaussian Modeling for Speaker Verification," icpr, vol. 3, pp.3298, 15th International Conference on Pattern Recognition (ICPR'00) - Volume 3, 2000
Usage of this product signifies your acceptance of the Terms of Use.