This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2013 International Conference on Information Networking (ICOIN)
Network intrusion detection with Fuzzy Genetic Algorithm for unknown attacks
Bangkok Thailand
January 28-January 30
ISBN: 978-1-4673-5740-1
P. Jongsuebsuk, Department of Computer Engineering King Mongkut's University of Technology Thonburi Bangkok, Thailand
N. Wattanapongsakorn, Department of Computer Engineering King Mongkut's University of Technology Thonburi Bangkok, Thailand
C. Charnsripinyo, National Electronics and Computer Technology Center 112 Phahonyothin Road, Klong Luang Pathumthani, Thailand
In this work, we consider detecting unknown or new network attack types with a Fuzzy Genetic Algorithm approach. The fuzzy rule is a supervised learning technique and genetic algorithm make fuzzy rule able to learn new attacks by itself. Moreover, this technique has high detection rate and robust. Therefore, we apply the fuzzy genetic algorithm approach to our real-time intrusion detection system implementation i.e. the data is detected right after it arrived to the detection system. In our experiments, various denial of service (DoS) attacks and Probe attacks are considered. We evaluate our IDS in terms of detection time, detection rate and false alarm rate. From the experiment, we obtain the average detection rate approximately over 97%.
Index Terms:
unknown detection,network intrustion detection,IDS,fuzzy genetic algorithm
Citation:
P. Jongsuebsuk, N. Wattanapongsakorn, C. Charnsripinyo, "Network intrusion detection with Fuzzy Genetic Algorithm for unknown attacks," icoin, pp.1-5, 2013 International Conference on Information Networking (ICOIN), 2013
Usage of this product signifies your acceptance of the Terms of Use.