This Article 
 Bibliographic References 
 Add to: 
2012 IEEE 12th International Conference on Data Mining Workshops
Geo-referenced Time-Series Summarization Using k-Full Trees: A Summary of Results
Brussels, Belgium Belgium
December 10-December 10
ISBN: 978-1-4673-5164-5
Given a set of regions with activity counts at each time instant (e.g., a listing of countries with number of mass protests or disease cases over time) and a spatial neighbor relation, geo-referenced time-series summarization (GTS) finds k-full trees that maximize activity coverage. GTS has important potential societal applications such as understanding the spread of political unrest, disease, crimes, fires, pollutants, etc. However, GTS is computationally challenging because (1) there are a large number of subsets of k-full trees due to the potential overlap of trees and (2) a region with no activity may be a part of a larger region with maximum activity coverage, making apriori-based pruning inapplicable. Previous approaches for spatio-temporal data mining detect anomalous or unusual areas and do not summarize activities. We propose a k-full tree (kFT) approach for GTS which features an algorithmic refinement for partitioning regions that leads to computational savings without affecting result quality. Experimental results show that our algorithmic refinement substantially reduces the computational cost. We also present a case study that shows the output of our approach on Arab Spring data.
Index Terms:
Vegetation,Partitioning algorithms,Diseases,Springs,Time series analysis,Data mining,Space heating,Full Trees,Spatial Data Mining,Summarization,Geo-referenced Time-series
Dev Oliver, Shashi Shekhar, James M. Kang, Renee Laubscher, Veronica Carlan, Michael R. Evans, "Geo-referenced Time-Series Summarization Using k-Full Trees: A Summary of Results," icdmw, pp.797-804, 2012 IEEE 12th International Conference on Data Mining Workshops, 2012
Usage of this product signifies your acceptance of the Terms of Use.