This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2012 IEEE 12th International Conference on Data Mining Workshops
Learning Domain-Specific Polarity Lexicons
Brussels, Belgium Belgium
December 10-December 10
ISBN: 978-1-4673-5164-5
Sentiment analysis aims to automatically estimate the sentiment in a given text as positive or negative. Polarity lexicons, often used in sentiment analysis, indicate how positive or negative each term in the lexicon is. However, since creating domain-specific polarity lexicons is expensive and time consuming, researchers often use a general purpose or domain independent lexicon. In this work, we address the problem of adapting a general purpose polarity lexicon to a specific domain and propose a simple yet effective adaptation algorithm. We experimented with two sets of reviews from the hotel and movie domains and observed that while our adaptation techniques changed the polarity values for only a small set of words, the overall test accuracy increased significantly: 77% to 83% in the hotel dataset and 61% to 66% in the movie dataset.
Index Terms:
Motion pictures,Accuracy,Feature extraction,Databases,Computational linguistics,USA Councils,Training,natural language processing,sentiment analysis,lexicon adaptation,polarity detection,machine learning
Citation:
Gulsen Demiroz, Berrin Yanikoglu, Dilek Tapucu, Yucel Saygin, "Learning Domain-Specific Polarity Lexicons," icdmw, pp.674-679, 2012 IEEE 12th International Conference on Data Mining Workshops, 2012
Usage of this product signifies your acceptance of the Terms of Use.