This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2012 IEEE 12th International Conference on Data Mining Workshops
Extracting Information from Sequences of Financial Ratios with Markov for Discrimination: An Application to Bankruptcy Prediction
Brussels, Belgium Belgium
December 10-December 10
ISBN: 978-1-4673-5164-5
In this paper, we propose a method that extracts information from sequences of financial ratios and investigate the usefulness of this information for bankruptcy prediction, which constitutes an important class of financial services. We use the annual financial reports available from an external financial information services provider to extract predictors based on the Markov for Discrimination (MFD) methodology. These predictors are used as inputs in a binary classification model, which applies logistic regression to estimate the odds of bankruptcy. The results suggest that MFD-based predictors can achieve substantial predictive performance in terms of the AUC and the 5-percent predictive lift, which are two relevant performance metrics in our case.
Index Terms:
Companies,Markov processes,Predictive models,Data mining,Logistics,Biological system modeling,Analytical models,financial services,bankruptcy predicition,sequence analysis,Markov for Discrimination
Citation:
Andrey Volkov, Dirk Van den Poel, "Extracting Information from Sequences of Financial Ratios with Markov for Discrimination: An Application to Bankruptcy Prediction," icdmw, pp.340-343, 2012 IEEE 12th International Conference on Data Mining Workshops, 2012
Usage of this product signifies your acceptance of the Terms of Use.