This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2012 IEEE 12th International Conference on Data Mining Workshops
Discovering Aberrant Patterns of Human Connectome in Alzheimer's Disease via Subgraph Mining
Brussels, Belgium Belgium
December 10-December 10
ISBN: 978-1-4673-5164-5
Alzheimer's disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. Diffusion weighted imaging (DWI) provides a promising way to explore the organization of white matter fiber tracts in the human brain in a non-invasive way. However, the immense amount of data from millions of voxels of a raw diffusion map prevent an easy way to utilizable knowledge. In this paper, we focus on the question how we can identify disrupted spatial patterns of the human connectome in AD based on a data mining framework. Using diffusion tractography, the human connectomes for each individual subject were constructed based on two diffusion derived attributes: fiber density and fractional anisotropy, to represent the structural brain connectivity patterns. Then, these humanconnectomes were further mapped into a series of unweighted graphs by discretization. After frequent sub graph mining, the abnormal score was finally defined to identify disrupted sub graph patterns in patients. Experiments demonstrated that our data-driven approach, for the first time, allows identifying selective spatial pattern changes of the human connectome in AD that perfectly matched grey matter changes of the disease. Our findings further bring new insights into how AD propagates and disrupts the regional integrity of large-scale structural brain networks in a fiber connectivity-based way.
Index Terms:
Humans,Data mining,Dementia,Tensile stress,Imaging,Subgraph Mining,Human Connectome,Diffusion Tensor Imaging,Alzheimer's Disease
Citation:
Junming Shao, Qinli Yang, Afra Wohlschlaeger, Christian Sorg, "Discovering Aberrant Patterns of Human Connectome in Alzheimer's Disease via Subgraph Mining," icdmw, pp.86-93, 2012 IEEE 12th International Conference on Data Mining Workshops, 2012
Usage of this product signifies your acceptance of the Terms of Use.