The Community for Technology Leaders
RSS Icon
Subscribe
Long Beach, CA, USA
Mar. 1, 2010 to Mar. 6, 2010
ISBN: 978-1-4244-5445-7
pp: 225-236
Xiaokui Xiao , Nanyang Technological University, Singapore
Guozhang Wang , Cornell University, Ithaca, USA
Johannes Gehrke , Cornell University, Ithaca, USA
ABSTRACT
Privacy preserving data publishing has attracted considerable research interest in recent years. Among the existing solutions, ∈-differential privacy provides one of the strongest privacy guarantees. Existing data publishing methods that achieve ∈-differential privacy, however, offer little data utility. In particular, if the output dataset is used to answer count queries, the noise in the query answers can be proportional to the number of tuples in the data, which renders the results useless. In this paper, we develop a data publishing technique that ensures ∈-differential privacy while providing accurate answers for range-count queries, i.e., count queries where the predicate on each attribute is a range. The core of our solution is a framework that applies wavelet transforms on the data before adding noise to it. We present instantiations of the proposed framework for both ordinal and nominal data, and we provide a theoretical analysis on their privacy and utility guarantees. In an extensive experimental study on both real and synthetic data, we show the effectiveness and efficiency of our solution.
CITATION
Xiaokui Xiao, Guozhang Wang, Johannes Gehrke, "Differential privacy via wavelet transforms", ICDE, 2010, 2013 IEEE 29th International Conference on Data Engineering (ICDE), 2013 IEEE 29th International Conference on Data Engineering (ICDE) 2010, pp. 225-236, doi:10.1109/ICDE.2010.5447831
27 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool