The Community for Technology Leaders
RSS Icon
Subscribe
Long Beach, CA, USA
Mar. 1, 2010 to Mar. 6, 2010
ISBN: 978-1-4244-5445-7
pp: 145-156
Dan Olteanu , Oxford University Computing Laboratory, OX1 3QD, UK
Jiewen Huang , Oxford University Computing Laboratory, OX1 3QD, UK
Christoph Koch , Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
ABSTRACT
This paper introduces a deterministic approximation algorithm with error guarantees for computing the probability of propositional formulas over discrete random variables. The algorithm is based on an incremental compilation of formulas into decision diagrams using three types of decompositions: Shannon expansion, independence partitioning, and product factorization. With each decomposition step, lower and upper bounds on the probability of the partially compiled formula can be quickly computed and checked against the allowed error.
CITATION
Dan Olteanu, Jiewen Huang, Christoph Koch, "Approximate confidence computation in probabilistic databases", ICDE, 2010, 2013 IEEE 29th International Conference on Data Engineering (ICDE), 2013 IEEE 29th International Conference on Data Engineering (ICDE) 2010, pp. 145-156, doi:10.1109/ICDE.2010.5447826
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool