The Community for Technology Leaders
RSS Icon
Subscribe
Taipei, Taiwan
Apr. 19, 2009 to Apr. 24, 2009
ISBN: 978-1-4244-2353-8
pp: 3125-3128
Yilun Chen , Department of EECS, University of Michigan, Ann Arbor, 48109-2122, USA
Yuantao Gu , Department of EE, Tsinghua University, Beijing 100084, China
Alfred O. Hero , Department of EECS, University of Michigan, Ann Arbor, 48109-2122, USA
ABSTRACT
We propose a new approach to adaptive system identification when the system model is sparse. The approach applies ℓ<inf>1</inf> relaxation, common in compressive sensing, to improve the performance of LMS-type adaptive methods. This results in two new algorithms, the zero-attracting LMS (ZA-LMS) and the reweighted zero-attracting LMS (RZA-LMS). The ZA-LMS is derived via combining a ℓ<inf>1</inf> norm penalty on the coefficients into the quadratic LMS cost function, which generates a zero attractor in the LMS iteration. The zero attractor promotes sparsity in taps during the filtering process, and therefore accelerates convergence when identifying sparse systems. We prove that the ZA-LMS can achieve lower mean square error than the standard LMS. To further improve the filtering performance, the RZA-LMS is developed using a reweighted zero attractor. The performance of the RZA-LMS is superior to that of the ZA-LMS numerically. Experiments demonstrate the advantages of the proposed filters in both convergence rate and steady-state behavior under sparsity assumptions on the true coefficient vector. The RZA-LMS is also shown to be robust when the number of non-zero taps increases.
CITATION
Yilun Chen, Yuantao Gu, Alfred O. Hero, "Sparse LMS for system identification", ICASSP, 2009, Acoustics, Speech, and Signal Processing, IEEE International Conference on, Acoustics, Speech, and Signal Processing, IEEE International Conference on 2009, pp. 3125-3128, doi:10.1109/ICASSP.2009.4960286
27 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool