The Community for Technology Leaders
RSS Icon
Subscribe
Kaiserslautern, Germany
Sept. 17, 2007 to Sept. 19, 2007
ISBN: 0-7695-2946-1
pp: 336-339
Marcio Carvalho , Federal University of Pernambuco
Teresa B. Ludermir , Federal University of Pernambuco
ABSTRACT
The optimization of architecture and weights of feed forward neural networks is a complex task of great importance in problems of supervised learning. In this work we analyze the use of the Particle Swarm Optimization algorithm for the optimization of neural network architectures and weights aiming better generalization performances through the creation of a compromise between low architectural complexity and low training errors. For evaluating these algorithms we apply them to benchmark classification problems of the medical field. The results showed that a PSOPSO based approach represents a valid alternative to optimize weights and architectures of MLP neural networks.
INDEX TERMS
null
CITATION
Marcio Carvalho, Teresa B. Ludermir, "Particle Swarm Optimization of Neural Network Architectures andWeights", HIS, 2007, Hybrid Intelligent Systems, International Conference on, Hybrid Intelligent Systems, International Conference on 2007, pp. 336-339, doi:10.1109/HIS.2007.45
23 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool