The Community for Technology Leaders
RSS Icon
Subscribe
Big Island, HI, USA
Jan. 6, 2003 to Jan. 9, 2003
ISBN: 0-7695-1874-5
pp: 338a
D. Berndt , University of South Florida
J. Fisher , University of South Florida
L. Johnson , IBM Global Services
J. Pinglikar , University of South Florida
A. Watkins , University of South Florida
ABSTRACT
Faulty software is usually costly and possibly life threatening as software becomes an increasingly critical component in a wide variety of systems. Thorough software testing by both developers and dedicated quality assurance staff is one way to uncover flaws. Automated test generation techniques can be used to augment the process, free of the cognitive biases that have been found in human testers. This paper focuses on breeding software test cases using genetic algorithms as part of a software testing cycle. An evolving fitness function that relies on a fossil record of organisms results in interesting search behaviors, based on the concepts of novelty, proximity, and severity. A case study that uses a simple, but widely studied program is used to illustrate the approach. Several visualization techniques are also introduced to analyze particular fossil records, as well as the overall search process.
INDEX TERMS
null
CITATION
D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, A. Watkins, "Breeding Software Test Cases with Genetic Algorithms", HICSS, 2003, 36th Hawaii International Conference on Systems Sciences, 36th Hawaii International Conference on Systems Sciences 2003, pp. 338a, doi:10.1109/HICSS.2003.1174917
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool