Subscribe

Singer Island, FL

Oct. 24, 1984 to Oct. 26, 1984

ISBN: 0-8186-0591-X

pp: 332-337

S. Moran , Technion

ABSTRACT

Combinatorial techniques for extending lower bounds results for decision trees to general types of queries are presented. We consider problems, which we call order invariant, that are defined by simple inequalities between inputs. A decision tree is called k-bounded if each query depends on at most k variables. We make no further assumptions on the type of queries. We prove that we can replace the queries of any k-bounded decision tree that solves an order invariant problem over a large enough input dornain with k-bounded queries whose outcome depends only on the relative order of the inputs. As a consequence, all existing lower bounds for comparison based algorithms are valid for general k-bounded decision trees, where k is a constant. We also prove an /spl Omega/(n log n) lower bound for the element uniqueness problem and several other problems for any k-bounded decision tree, such that k - )(n/sup c/) and c < 1/2. This lower bound is tight since that there exist n/sup 1/2/-bounded decision trees of complexity 0(n) that solve the element uniqueness problem. All the lower bounds mentioned above are shown to hold for nondeterministic and probabilistic decision trees as well.

CITATION

S. Moran,
M. Snir,
U. Manber,
"Applications Of Ramsey's Theorem To Decision Trees Complexity",

*FOCS*, 1984, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science 1984, pp. 332-337, doi:10.1109/SFCS.1984.715933