This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2007 IEEE Conference on Computer Vision and Pattern Recognition
A Face Annotation Framework with Partial Clustering and Interactive Labeling
Minneapolis, MN, USA
June 17-June 22
ISBN: 1-4244-1179-3
Yuandong Tian, Shanghai Jiaotong University, China. tydsh@sjtu.edu.cn
Wei Liu, The Chinese University of Hong Kong. wliu5@ie.cuhk.edu.hk
Rong Xiao, Microsoft Research Asia, Beijing, China. rxiao@microsoft.com
Fang Wen, Microsoft Research Asia, Beijing, China. fangwen@microsoft.com
Xiaoou Tang, Microsoft Research Asia, Beijing, China. xitang@microsoft.com
Face annotation technology is important for a photo management system. In this paper, we propose a novel interactive face annotation framework combining unsupervised and interactive learning. There are two main contributions in our framework. In the unsupervised stage, a partial clustering algorithm is proposed to find the most evident clusters instead of grouping all instances into clusters, which leads to a good initial labeling for later user interaction. In the interactive stage, an efficient labeling procedure based on minimization of both global system uncertainty and estimated number of user operations is proposed to reduce user interaction as much as possible. Experimental results show that the proposed annotation framework can significantly reduce the face annotation workload and is superior to existing solutions in the literature.
Citation:
Yuandong Tian, Wei Liu, Rong Xiao, Fang Wen, Xiaoou Tang, "A Face Annotation Framework with Partial Clustering and Interactive Labeling," cvpr, pp.1-8, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007
Usage of this product signifies your acceptance of the Terms of Use.