The Community for Technology Leaders
RSS Icon
Los Angeles, CA
March 31, 2009 to April 2, 2009
ISBN: 978-0-7695-3507-4
pp: 435-441
The paper presents an evaluation of four clustering algorithms: k-means, average linkage, complete linkage, and Ward’s method, with the latter three being different hierarchical methods. The quality of the clusters created by the algorithms was measured in terms of cluster cohesiveness and semantic cohesiveness, and both quantitative and predicate-based similarity criteria were considered.Two similarity matrices were calculated as weighted sums of a set of selected MPEG-7 color feature descriptors (representing color, texture and shape), to measure the effectiveness of clustering subsets of COREL color photo images. The best quality clusters were formed by the average-linkage hierarchical method. Even though weighted texture and shape similarity measures were used in addition to total color, average-linkage outperformed k-means in the formation of both semantic and cohesive clusters. Notably, though, the addition of texture and shape features degraded cluster quality for all three hierarchical methods.
Clustering, Content-Based Image Retrieval
Mesfin Sileshi, Björn Gambäck, "Evaluating Clustering Algorithms: Cluster Quality and Feature Selection in Content-Based Image Clustering", CSIE, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 435-441, doi:10.1109/CSIE.2009.1002
31 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool