The Community for Technology Leaders
RSS Icon
Subscribe
Los Angeles, CA
March 31, 2009 to April 2, 2009
ISBN: 978-0-7695-3507-4
pp: 723-727
ABSTRACT
For the feature selection and parameter optimization of LS-SVM, propose a At first, a population of Particles (feature subsets) was randomly generated, then the features and parameters are optimized by PSO algorithm. The experiments on the UCI database indicate that the proposed method can efficiently find the suitable feature subsets and LS-SVM parameters. Also, comparison are made against GALS-SVM and LS-SVM; and the results show that the proposed PSOLS-SVM outperform the others in classification performance.
INDEX TERMS
LS-SVM, feature selection, parameters optimization, partical swarm optimization algorithm
CITATION
Quan-Zhu Yao, Jie Cai, Jiu-Long Zhang, "Simultaneous Feature Selection and LS-SVM Parameters Optimization Algorithm Based on PSO", CSIE, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 723-727, doi:10.1109/CSIE.2009.148
33 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool