The Community for Technology Leaders
RSS Icon
Subscribe
Los Angeles, CA
March 31, 2009 to April 2, 2009
ISBN: 978-0-7695-3507-4
pp: 645-650
ABSTRACT
This paper has presented a novel approach designed to realize multi-section short-term traffic flow synchronization forecasting in terms of road network. First, the road network is split into sub networks in accordance with traffic flow spatial-temporal characteristics. Second, chaos analysis method is proposed to forecast short-term traffic flow. Short-term traffic flow characteristics have been figured out by the phase space reconstruction technology and G-P algorithm. By analyzing the traffic flow database, the chaos characteristics of short-term traffic flow time series are correspondingly obtained. Furthermore, Elman neural network in which the input is reconstructing time series has been employed to achieve multi-section forecasting. In addition, an empirical study has been carried out to illustrate this approach. Consequently, this approach has been verified by using traffic flow field data on the road network. The results which support the use of this approach is indicating higher accuracy in short-term traffic flow forecasting.
CITATION
Chunjiao Dong, Chunfu Shao, Xia Li, "Short-Term Traffic Flow Forecasting of Road Network Based on Spatial-Temporal Characteristics of Traffic Flow", CSIE, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 645-650, doi:10.1109/CSIE.2009.567
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool