The Community for Technology Leaders
RSS Icon
Subscribe
Los Angeles, CA
March 31, 2009 to April 2, 2009
ISBN: 978-0-7695-3507-4
pp: 544-548
ABSTRACT
In this study, we propose a Semi-Supervised Support Vector Machine (S3VM) based incorporation prior biological knowledge for recognizing translation initiation sites (TISs). The task of finding TIS can be modeled as a classification problem. S3VM builds a SVM classifier based on small amounts of labeled data and large amounts of unlabeled data, incorporates prior biological knowledge by engineering an appropriate kernel function with a batch-mode incremental training method. The algorithm has been implemented and tested on previously published data. Our experimental results on real nucleotide sequences data show that our methods improve the prediction accuracy greatly and our method performs significantly better than ESTSCAN and SVMs with Salzberg kernel.
INDEX TERMS
S3VM, finding TIS, classification problem, kernel function, batch-mode incremental
CITATION
Juncai Huang, Fengbi Wang, Yangji Ou, Mingtian Zhou, "A Semi-supervised SVM Based Incorporation Prior Biological Knowledge for Recognizing Translation Initiation Sites", CSIE, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 544-548, doi:10.1109/CSIE.2009.447
21 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool