The Community for Technology Leaders
RSS Icon
Los Angeles, CA
March 31, 2009 to April 2, 2009
ISBN: 978-0-7695-3507-4
pp: 483-487
Current mainstream vehicle recognition algorithms mainly depend on the synthesis of both appearance based and knowledge based features to identify the candidate objects. Whereas, because of the unpredictable complex noises in real world environments, the existences, quantification and the explanation for certain features are often ambiguous which makes current algorithm hard to fulfill the dilemmatic high sensitivity/accuracy restriction, and an improvement for a certain feature(or data sets) often leads to a degeneration for others. This paper introduces a probability based feature selection method which enables the dynamic feature selection and multigrain feature evaluation. The experiment result (for rear vehicle recognition) shows the proposed method is an efficient way to improve both the sensitivity and the accuracy rates without the degeneration phenomenon.
vehicle recognitioin, dynamic feature selection
Chunyang Yang, Bobo Duan, Wei Liu, Jinwei Zhang, "A Dynamic Feature Selection Method for Vision Based Vehicle Recognition", CSIE, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 483-487, doi:10.1109/CSIE.2009.877
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool