The Community for Technology Leaders
RSS Icon
Subscribe
Los Angeles, California USA
Mar. 31, 2009 to Apr. 2, 2009
ISBN: 978-0-7695-3507-4
pp: 126-128
ABSTRACT
A proportion factor is constructed though the Maximum Aposteriori Probability of examples in test data to select the training examples in incremental learning process. Instead of complex normal classify loss expression, the proportion factor λ is used to estimate the classify loss to improve classification efficiency. The final experiment shows that this algorithm is feasible, and more accurate than simple Bayesian classifier. The computing time is highly reduced on the optimal selection of examples in incremental learning process.
INDEX TERMS
Bayesian classifier, simplified algorithm, incremental learning
CITATION
Chen Hua, Zhang Xiao-gang, Zhang Jing, Ding Li-hua, "A Simplified Learning Algorithm of Incremental Bayesian", CSIE, 2009, Computer Science and Information Engineering, World Congress on, Computer Science and Information Engineering, World Congress on 2009, pp. 126-128, doi:10.1109/CSIE.2009.305
38 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool