This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2009 WRI World Congress on Computer Science and Information Engineering
On the Effectiveness of Collaborative Tagging Systems for Describing Resources
Los Angeles, California USA
March 31-April 02
ISBN: 978-0-7695-3507-4
This article investigates the effectiveness of community generated tags as social descriptors of resources uncoordinatedly annotated by community members. Our goal is to demonstrate practically that the aggregated tags applied to resources by the entire community define reasonably well resource meaning. This would allow using them for calculating semantic distance between resources. To test our hypothesis, we analyzed a large amount of data downloaded from del.icio.us. To this end, we developed an algorithm for searching 'similar' URLs based on the similarity of their aggregated tag vectors, which allowed us to identify clusters of similar resources. Our experimental findings demonstrate that massive tagging of resources leads to resource meanings that are defined bottom-up, and they prove the effectiveness of collaborative tagging systems for describing resources.
Index Terms:
Social Tagging, Web2.0
Citation:
Jinsheng Xu, Christo Dichev, Albert Esterline, Darina Dicheva, Jinghua Zhang, "On the Effectiveness of Collaborative Tagging Systems for Describing Resources," csie, vol. 4, pp.467-471, 2009 WRI World Congress on Computer Science and Information Engineering, 2009
Usage of this product signifies your acceptance of the Terms of Use.