The Community for Technology Leaders
RSS Icon
Subscribe
Los Angeles, CA
March 31, 2009 to April 2, 2009
ISBN: 978-0-7695-3507-4
pp: 237-240
ABSTRACT
Fraud detection in tax declaration plays an important role in tax assessment. Using ensemble ISGNN (Iteration learning Self-Generating Neural Network) to solve the problem of fraud detection in tax declaration is presented in this paper. An ensemble ISGNN is trained using financial data of sampled enterprises, and the trained ensemble ISGNN is then employed to detect whether tax declared by an enterprise is legitimate or not. Experimental results show that proposed approach is effective: classification precision of proposed method is 96.7742% in 31 sample data, and it is 3.22 points higher than that of SGNN. The number of samples to train ISGNN of ensemble ISGNN is one third that of SGNN.
INDEX TERMS
ISGNN; Ensemble ISGNN; Fraud Detection
CITATION
Kehan Zhang, Aiguo Li, Baowei Song, "Fraud Detection in Tax Declaration Using Ensemble ISGNN", CSIE, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 237-240, doi:10.1109/CSIE.2009.73
21 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool