This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2009 WRI World Congress on Computer Science and Information Engineering
An Investigation of Forecasting Critical Spare Parts Requirement
Los Angeles, California USA
March 31-April 02
ISBN: 978-0-7695-3507-4
The critical spare parts (CSP) is essential to machine operation, which is also more expensive, have longer purchasing lead time and larger demand variation than non-critical spare parts. When the equipment is operating, critical spare parts required to be changed due to wear and tear. Excessive critical spare parts will cause accumulation of the inventory and insufficiency will cause termination of machine operation, thereby leading to loss. Therefore, it is an important issue to devise a way to forecast the future required amount of CSP accurately.    This investigation applied grey prediction model, back-propagation network and moving average method to forecast the CSP requirement in a semiconductor factory, so as to effectively predict the required number of CSP, which can be provide as a reference of critical spare parts control.
Index Terms:
Forecast, spare parts, grey prediction, back-propagation network
Citation:
Fei-Long Chen, Yun-Chin Chen, "An Investigation of Forecasting Critical Spare Parts Requirement," csie, vol. 4, pp.225-230, 2009 WRI World Congress on Computer Science and Information Engineering, 2009
Usage of this product signifies your acceptance of the Terms of Use.