The Community for Technology Leaders
RSS Icon
Subscribe
Los Angeles, CA
March 31, 2009 to April 2, 2009
ISBN: 978-0-7695-3507-4
pp: 736-740
ABSTRACT
Recently, the discovery of Deep Web data source and domain-relevant issue attract more and more attentions. This paper proposed a method using multi-classifier to discover and classify the data source of Deep Web. Firstly, It used Naïve bays classifier to class the page into domain relevance or not. Secondly, improved C4.5 Decision tree algorithm was used to identify the query interface. The result of the experiment competed with single decision tree classifier proved this method is effective.
CITATION
Li Zhi-tao, Liu Quan, Cui Zhi-ming, Fu Yu-chen, "A Method to Automatically Discover and Classify Deep Web Data Source Using Multi-Classifier", CSIE, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 736-740, doi:10.1109/CSIE.2009.435
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool