The Community for Technology Leaders
RSS Icon
Los Angeles, CA
March 31, 2009 to April 2, 2009
ISBN: 978-0-7695-3507-4
pp: 35-39
We investigate the effects of risk perception in a SIS model for malware propagating in different types of networks such as regular, random and scale-free. We assume that the perception of the risk of being infected rely on the fraction of neighbors that are infected. The effects are mainly affected by two parameters denoted by J and  , which models the linear response and nonlinear effects respectively. They can reduce the infectivity of the malware as a function of the infected neighbors. We study the models in the mean-field approximation and by numerical simulations for the three kinds of networks. The results show that for homogeneous and random networks, there is always a value of perception that stops the malwares. But in the “worst case” scenario of a scale-free network with diverging connectivity, a linear perception can not stop the malwares. With the nonlinear increase of the perception risk, however, the malware tends to be extinct. This transition is not continuous and is presumably induced by fluctuations in center nodes such as hubs or switches. An understanding of the risk perception in modeling malware propagation in networks is very important for designing effective detection and prevention strategies for such networks.
perception, malware, propagation model
Chang-guang Wang, Shuai Fu, Xu Bai, Li-jing Bai, "Risk Perception in Modeling Malware Propagation in Networks", CSIE, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 35-39, doi:10.1109/CSIE.2009.115
7 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool