Subscribe

Los Angeles, CA

March 31, 2009 to April 2, 2009

ISBN: 978-0-7695-3507-4

pp: 755-759

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/CSIE.2009.293

ABSTRACT

The paper concerns on the free vibrations of circular plate with arbitrary number of the elastic supports and the elastically mounted masses at arbitrary positions by using the integral equation method. A set of complete systems of orthogonal functions, which is constructed by Bessel functions of the first kind, is used to construct the Green's function of circular plates firstly. Then the eigenvalue problem of free vibration of circular plate carrying oscillators and elastic supports at arbitrary positions is transformed into the problem of integral equation by using the superposition theorem and the physical meaning of the Green’s function. And then the eigenvalue problem of integral equation is transformed into a standard eigenvalue problem of a matrix with infinite order. Numerical examples are presented.

INDEX TERMS

Vibration, Circular plate, Green's function, Natural frequency, Integral equation method

CITATION

Wang WeiDong,
Cheng Quan,
"Free Vibration of Circular Plate with Oscillators and Elastic Supports at Arbitrary Positions by Integral Equation Method",

*CSIE*, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 755-759, doi:10.1109/CSIE.2009.293