Subscribe

Los Angeles, CA

March 31, 2009 to April 2, 2009

ISBN: 978-0-7695-3507-4

pp: 669-673

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/CSIE.2009.849

ABSTRACT

An efficient implementation of Generalized Predictive Control using multi-layer feed forward neural network as the plant’s nonlinear model is presented. Two algorithm i.e. Newton Raphson and Levenberg Marquardt algorithm are implemented and their results are compared. The details about this implementation are given. The utility of each algorithm is outlined in the conclusion. In using Levenberg Marquardt algorithm, the number of iteration needed for convergence is significantly reduced from other techniques. This paper presents a detail derivation of the neural generalized predictive control algorithm with Newton Raphson and Levenberg Marquardt as the minimization algorithm. A simulation result of Newton Raphson and Levenberg Marquardt algorithm are compared.Levenberg Marquardt algorithm shows a convergence of a good solution. The performance comparison of these two algorithms also given in terms of ISE and IAE.

INDEX TERMS

Feedforward neural network, GPC, NGPC and Model predictive control

CITATION

Sadhana K. Chidrawar,
Sujata Bhaskarwar,
Balasaheb M. Patre,
"Implementation of Neural Network for Generalized Predictive Control: A Comparison between a Newton Raphson and Levenberg Marquardt Implementation",

*CSIE*, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 669-673, doi:10.1109/CSIE.2009.849