This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2009 WRI World Congress on Computer Science and Information Engineering
A Graph-Based Approach for Clustering Analysis of Gene Expression Data by Using Topological Features
Los Angeles, California USA
March 31-April 02
ISBN: 978-0-7695-3507-4
This paper proposed a graph-based clustering approach for gene expression data. The new method is based on regulatory network graph obtained from gene expression data. Clustering is performed based on the topological features of the graph which characterizes the regulatory relationships between genes, which is different from the conventional methods that simply group genes with similar gene expression patterns. The performance of the proposed method is assessed by real gene expression data clustering. The results clearly show that the proposed method can give higher accuracies in clustering recognition than the traditional approaches which are based on similarity between gene expression patterns.
Citation:
Wenjun Wang, Junying Zhang, Jin Xu, Yue Wang, "A Graph-Based Approach for Clustering Analysis of Gene Expression Data by Using Topological Features," csie, vol. 1, pp.559-563, 2009 WRI World Congress on Computer Science and Information Engineering, 2009
Usage of this product signifies your acceptance of the Terms of Use.