This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2011 26th Annual IEEE Conference on Computational Complexity
On the Minimal Fourier Degree of Symmetric Boolean Functions
San Jose, California USA
June 08-June 11
ISBN: 978-0-7695-4411-3
In this paper we give a new upper bound on the minimal degree of a nonzero Fouriercoefficient in any non-linear symmetric Boolean function. Specifically, we prove that forevery non-linear and symmetric $f:\B^{k}\to\B$ there exists a set $\emptyset\neqS\subset[k]$ such that $|S|=O(\Gamma(k)+\sqrt{k})$, and $\hat{f}(S)\neq0$, where$\Gamma(m)\leq m^{0.525}$ is the largest gap between consecutive prime numbers in$\{1,\ldots,m\}$. As an application we obtain a new analysis of the PAC learningalgorithm for symmetric juntas, under the uniform distribution, of Mossel et al. [JCSS,2004]. Namely, we show that the running time of their algorithm is at most$n^{O(k^{0.525})}\cdot\poly(n,2^{k},\log(1/\delta))$ where $n$ is the number ofvariables, $k$ is the size of the junta (i.e. number of relevant variables) and $\delta$is the error probability. In particular, for $k\geq\log(n)^{1/(1-0.525)}\approx\log(n)^{2.1}$ our analysis matches the lower bound $2^k$ (up to polynomial factors).\sloppy Our bound on the degree greatly improves the previous result of Kolountzakis etal. [Combinatorica, 2009] who proved that $|S|=O(k/\log k)$.
Index Terms:
Fourier spectrum, symmetric functions, learning juntas
Citation:
Amir Shpilka, Avishay Tal, "On the Minimal Fourier Degree of Symmetric Boolean Functions," ccc, pp.200-209, 2011 26th Annual IEEE Conference on Computational Complexity, 2011
Usage of this product signifies your acceptance of the Terms of Use.