The Community for Technology Leaders
RSS Icon
Subscribe
San Jose, California USA
June 8, 2011 to June 11, 2011
ISBN: 978-0-7695-4411-3
pp: 189-199
ABSTRACT
We show several results related to interactive proof modes of communication complexity. First we show lower bounds for the QMA-communication complexity of the functions Inner Product and Disjointness. We describe a general method to prove lower bounds for QMA-communication complexity, and show how one can 'transfer' hardness under an analogous measure in the query complexity model to the communication model using Sherstov's pattern matrix method.Combining a result by Vereshchagin and the pattern matrix method we find a partial function with AM-communication complexity O(\log n), PP-communication complexity \Omega(n^{1/3}), and QMA-communication complexity \Omega(n^{1/6}). Hence in the world of communication complexity noninteractive quantum proof systems are not able to efficiently simulate co-nondeterminism or interaction. These results imply that the related questions in Turing machine complexity theory cannot be resolved by 'algebrizing' techniques. Finally we show that in MA-protocols there is an exponential gap between one-way protocols and two-way protocols for a partial function (this refers to the interaction between Alice and Bob). This is in contrast to nondeterministic, AM-, and QMA-protocols, where one-way communication is essentially optimal.
INDEX TERMS
communication complexity, Arthur Merlin games, quantum proofs
CITATION
Hartmut Klauck, "On Arthur Merlin Games in Communication Complexity", CCC, 2011, 2012 IEEE 27th Conference on Computational Complexity, 2012 IEEE 27th Conference on Computational Complexity 2011, pp. 189-199, doi:10.1109/CCC.2011.33
32 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool