This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2011 26th Annual IEEE Conference on Computational Complexity
Non-negatively Weighted #CSP: An Effective Complexity Dichotomy
San Jose, California USA
June 08-June 11
ISBN: 978-0-7695-4411-3
We prove a complexity dichotomy theorem for all non-negatively weighted counting Constraint Satisfaction Problems (#CSP). This caps a long series of important results on counting problems, including unweighted and weighted graph homomorphisms and the celebrated dichotomy theorem for unweighted #CSP. Our dichotomy theorem gives a succinct criterion for tractability. If a set F of constraint functions satisfies the criterion, then the #CSP problem defined by F is solvable in polynomial time; if it does not satisfy the criterion, then the problem is #P-hard. We furthermore show that the question of whether F satisfies the criterion is decidable in NP. Surprisingly, our tractability criterion is simpler than the previous tractability criteria for the more restricted classes of problems, although when specialized to those cases, they are logically equivalent. Our proof mainly uses Linear Algebra and represents a departure from Universal Algebra, the dominant methodology in recent years.
Citation:
Jin-Yi Cai, Xi Chen, Pinyan Lu, "Non-negatively Weighted #CSP: An Effective Complexity Dichotomy," ccc, pp.45-54, 2011 26th Annual IEEE Conference on Computational Complexity, 2011
Usage of this product signifies your acceptance of the Terms of Use.